BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 28673128)

  • 21. C4-Dicarboxylate Utilization in Aerobic and Anaerobic Growth.
    Unden G; Strecker A; Kleefeld A; Kim OB
    EcoSal Plus; 2016 Jun; 7(1):. PubMed ID: 27415771
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Genetic reconstruction of the aerobic central metabolism in Escherichia coli for the absolute aerobic production of succinate.
    Lin H; Bennett GN; San KY
    Biotechnol Bioeng; 2005 Jan; 89(2):148-56. PubMed ID: 15543598
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The CreC Regulator of Escherichia coli, a New Target for Metabolic Manipulations.
    Godoy MS; Nikel PI; Cabrera Gomez JG; Pettinari MJ
    Appl Environ Microbiol; 2016 Jan; 82(1):244-54. PubMed ID: 26497466
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Identification of major malate export systems in an engineered malate-producing Escherichia coli aided by substrate similarity search.
    Kurgan G; Kurgan L; Schneider A; Onyeabor M; Rodriguez-Sanchez Y; Taylor E; Martinez R; Carbonell P; Shi X; Gu H; Wang X
    Appl Microbiol Biotechnol; 2019 Nov; 103(21-22):9001-9011. PubMed ID: 31641813
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Osmotolerance in Escherichia coli Is Improved by Activation of Copper Efflux Genes or Supplementation with Sulfur-Containing Amino Acids.
    Xiao M; Zhu X; Fan F; Xu H; Tang J; Qin Y; Ma Y; Zhang X
    Appl Environ Microbiol; 2017 Apr; 83(7):. PubMed ID: 28115377
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Improved succinate production in Corynebacterium glutamicum by engineering glyoxylate pathway and succinate export system.
    Zhu N; Xia H; Yang J; Zhao X; Chen T
    Biotechnol Lett; 2014 Mar; 36(3):553-60. PubMed ID: 24129953
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Metabolic engineering of aerobic succinate production systems in Escherichia coli to improve process productivity and achieve the maximum theoretical succinate yield.
    Lin H; Bennett GN; San KY
    Metab Eng; 2005 Mar; 7(2):116-27. PubMed ID: 15781420
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A novel whole-phase succinate fermentation strategy with high volumetric productivity in engineered Escherichia coli.
    Li Y; Li M; Zhang X; Yang P; Liang Q; Qi Q
    Bioresour Technol; 2013 Dec; 149():333-40. PubMed ID: 24125798
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Genome-scale in silico aided metabolic analysis and flux comparisons of Escherichia coli to improve succinate production.
    Wang Q; Chen X; Yang Y; Zhao X
    Appl Microbiol Biotechnol; 2006 Dec; 73(4):887-94. PubMed ID: 16927085
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Construction of engineered Escherichia coli for aerobic succinate production].
    Kang Z; Geng Y; Zhang Y; Qi Q
    Sheng Wu Gong Cheng Xue Bao; 2008 Dec; 24(12):2081-5. PubMed ID: 19306579
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Engineering of Corynebacterium glutamicum for growth and succinate production from levoglucosan, a pyrolytic sugar substrate.
    Kim EM; Um Y; Bott M; Woo HM
    FEMS Microbiol Lett; 2015 Oct; 362(19):. PubMed ID: 26363018
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Model-assisted formate dehydrogenase-O (fdoH) gene knockout for enhanced succinate production in Escherichia coli from glucose and glycerol carbon sources.
    Mienda BS; Shamsir MS; Md Illias R
    J Biomol Struct Dyn; 2016 Nov; 34(11):2305-16. PubMed ID: 26510527
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Aerobic production of succinate from arabinose by metabolically engineered Corynebacterium glutamicum.
    Chen T; Zhu N; Xia H
    Bioresour Technol; 2014 Jan; 151():411-4. PubMed ID: 24169202
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Production of Succinate from Acetate by Metabolically Engineered Escherichia coli.
    Li Y; Huang B; Wu H; Li Z; Ye Q; Zhang YP
    ACS Synth Biol; 2016 Nov; 5(11):1299-1307. PubMed ID: 27088218
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Carbon flux analysis by 13C nuclear magnetic resonance to determine the effect of CO2 on anaerobic succinate production by Corynebacterium glutamicum.
    Radoš D; Turner DL; Fonseca LL; Carvalho AL; Blombach B; Eikmanns BJ; Neves AR; Santos H
    Appl Environ Microbiol; 2014 May; 80(10):3015-24. PubMed ID: 24610842
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of growth phase feeding strategies on succinate production by metabolically engineered Escherichia coli.
    Jiang M; Liu SW; Ma JF; Chen KQ; Yu L; Yue FF; Xu B; Wei P
    Appl Environ Microbiol; 2010 Feb; 76(4):1298-300. PubMed ID: 20038712
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The Escherichia coli SLC26 homologue YchM (DauA) is a C(4)-dicarboxylic acid transporter.
    Karinou E; Compton EL; Morel M; Javelle A
    Mol Microbiol; 2013 Feb; 87(3):623-40. PubMed ID: 23278959
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Succinate production by metabolically engineered Escherichia coli using sugarcane bagasse hydrolysate as the carbon source.
    Liu R; Liang L; Cao W; Wu M; Chen K; Ma J; Jiang M; Wei P; Ouyang P
    Bioresour Technol; 2013 May; 135():574-7. PubMed ID: 23010211
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Collaborative regulation of CO2 transport and fixation during succinate production in Escherichia coli.
    Zhu LW; Zhang L; Wei LN; Li HM; Yuan ZP; Chen T; Tang YL; Liang XH; Tang YJ
    Sci Rep; 2015 Dec; 5():17321. PubMed ID: 26626308
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Reengineering Escherichia coli for Succinate Production in Mineral Salts Medium.
    Zhang X; Jantama K; Shanmugam KT; Ingram LO
    Appl Environ Microbiol; 2009 Dec; 75(24):7807-13. PubMed ID: 19837840
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.