These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 28673372)

  • 1. Simplifying Electron Beam Channeling in Scanning Transmission Electron Microscopy (STEM).
    Wu RJ; Mittal A; Odlyzko ML; Mkhoyan KA
    Microsc Microanal; 2017 Aug; 23(4):794-808. PubMed ID: 28673372
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electron beam broadening in electron-transparent samples at low electron energies.
    Hugenschmidt M; Müller E; Gerthsen D
    J Microsc; 2019 Jun; 274(3):150-157. PubMed ID: 31001840
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three dimensional analysis of the composition in solid alloys by variable probe in scanning transmission electron microscopy.
    Rotunno E; Albrecht M; Markurt T; Remmele T; Grillo V
    Ultramicroscopy; 2014 Nov; 146():62-70. PubMed ID: 25113846
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of electron channeling in HAADF-STEM intensity in La2CuSnO6.
    Haruta M; Kurata H; Komatsu H; Shimakawa Y; Isoda S
    Ultramicroscopy; 2009 Mar; 109(4):361-7. PubMed ID: 19201539
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electron beam coherence measurements using diffracted beam interferometry/holography.
    Herring RA
    J Electron Microsc (Tokyo); 2009 Jun; 58(3):213-21. PubMed ID: 19141592
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface channeling in aberration-corrected scanning transmission electron microscopy of nanostructures.
    Liu J; Allard LF
    Microsc Microanal; 2010 Aug; 16(4):425-33. PubMed ID: 20598201
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-dimensional imaging of individual point defects using selective detection angles in annular dark field scanning transmission electron microscopy.
    Johnson JM; Im S; Windl W; Hwang J
    Ultramicroscopy; 2017 Jan; 172():17-29. PubMed ID: 27792913
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Scattering angle dependence of temperature susceptivity of electron scattering in scanning transmission electron microscopy.
    Zhu M; Hwang J
    Ultramicroscopy; 2022 Jan; 232():113419. PubMed ID: 34740029
    [TBL] [Abstract][Full Text] [Related]  

  • 9. STEM beam channeling in BaSnO
    Yun H; Prakash A; Jalan B; Jeong JS; Mkhoyan KA
    Ultramicroscopy; 2020 Jan; 208():112863. PubMed ID: 31683082
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thickness dependence of scattering cross-sections in quantitative scanning transmission electron microscopy.
    Martinez GT; van den Bos KHW; Alania M; Nellist PD; Van Aert S
    Ultramicroscopy; 2018 Apr; 187():84-92. PubMed ID: 29413416
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative atomic resolution mapping using high-angle annular dark field scanning transmission electron microscopy.
    Van Aert S; Verbeeck J; Erni R; Bals S; Luysberg M; Van Dyck D; Van Tendeloo G
    Ultramicroscopy; 2009 Sep; 109(10):1236-44. PubMed ID: 19525069
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simulation of atomic-scale high-angle annular dark field scanning transmission electron microscopy images.
    Yamazaki T; Watanabe K; Recnik A; Ceh M; Kawasaki M; Shiojiri M
    J Electron Microsc (Tokyo); 2000; 49(6):753-9. PubMed ID: 11270856
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Depth-dependent imaging of individual dopant atoms in silicon.
    Voyles PM; Muller DA; Kirkland EJ
    Microsc Microanal; 2004 Apr; 10(2):291-300. PubMed ID: 15306055
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Moiré fringe imaging of heterostructures by scanning transmission electron microscopy.
    Hu WT; Tian M; Wang YJ; Zhu YL
    Micron; 2024 Oct; 185():103679. PubMed ID: 38924906
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative annular dark-field STEM images of a silicon crystal using a large-angle convergent electron probe with a 300-kV cold field-emission gun.
    Kim S; Oshima Y; Sawada H; Kaneyama T; Kondo Y; Takeguchi M; Nakayama Y; Tanishiro Y; Takayanagi K
    J Electron Microsc (Tokyo); 2011; 60(2):109-16. PubMed ID: 21247969
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxidation-state sensitive imaging of cerium dioxide by atomic-resolution low-angle annular dark field scanning transmission electron microscopy.
    Johnston-Peck AC; Winterstein JP; Roberts AD; DuChene JS; Qian K; Sweeny BC; Wei WD; Sharma R; Stach EA; Herzing AA
    Ultramicroscopy; 2016 Mar; 162():52-60. PubMed ID: 26744830
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-dimensional visualization of dislocations in a ferromagnetic material by magnetic-field-free electron tomography.
    Hasezaki KL; Saito H; Sannomiya T; Miyazaki H; Gondo T; Miyazaki S; Hata S
    Ultramicroscopy; 2017 Nov; 182():249-257. PubMed ID: 28779615
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative STEM Imaging of Order-Disorder Phenomena in Double Perovskite Thin Films.
    Esser BD; Hauser AJ; Williams RE; Allen LJ; Woodward PM; Yang FY; McComb DW
    Phys Rev Lett; 2016 Oct; 117(17):176101. PubMed ID: 27824443
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Influence of Beam Broadening on the Spatial Resolution of Annular Dark Field Scanning Transmission Electron Microscopy.
    de Jonge N; Verch A; Demers H
    Microsc Microanal; 2018 Feb; 24(1):8-16. PubMed ID: 29485023
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Decisive factors for realizing atomic-column resolution using STEM and EELS.
    Kimoto K; Ishizuka K; Matsui Y
    Micron; 2008; 39(3):257-62. PubMed ID: 18054240
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.