These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

335 related articles for article (PubMed ID: 28673664)

  • 1. On the choice of outlet boundary conditions for patient-specific analysis of aortic flow using computational fluid dynamics.
    Pirola S; Cheng Z; Jarral OA; O'Regan DP; Pepper JR; Athanasiou T; Xu XY
    J Biomech; 2017 Jul; 60():15-21. PubMed ID: 28673664
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of inlet and outlet boundary conditions in image-based CFD modeling of aortic flow.
    Madhavan S; Kemmerling EMC
    Biomed Eng Online; 2018 May; 17(1):66. PubMed ID: 29843730
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessment of boundary conditions for CFD simulation in human carotid artery.
    Xu P; Liu X; Zhang H; Ghista D; Zhang D; Shi C; Huang W
    Biomech Model Mechanobiol; 2018 Dec; 17(6):1581-1597. PubMed ID: 29982960
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A modified method of computed fluid dynamics simulation in abdominal aorta and visceral arteries.
    Shi Y; Peng C; Liu J; Lan H; Li C; Qin W; Yuan T; Kan Y; Wang S; Fu W
    Comput Methods Biomech Biomed Engin; 2021 Nov; 24(15):1718-1729. PubMed ID: 34569360
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Validation of Numerical Simulations of Thoracic Aorta Hemodynamics: Comparison with In Vivo Measurements and Stochastic Sensitivity Analysis.
    Boccadifuoco A; Mariotti A; Capellini K; Celi S; Salvetti MV
    Cardiovasc Eng Technol; 2018 Dec; 9(4):688-706. PubMed ID: 30357714
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Numerical simulation in the abdominal aorta and the visceral arteries with or without stenosis based on 2D PCMRI.
    Peng C; Liu J; He W; Qin W; Yuan T; Kan Y; Wang K; Wang S; Shi Y
    Int J Numer Method Biomed Eng; 2022 Mar; 38(3):e3569. PubMed ID: 34967124
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Minimizing the blood velocity differences between phase-contrast magnetic resonance imaging and computational fluid dynamics simulation in cerebral arteries and aneurysms.
    Mohd Adib MAH; Ii S; Watanabe Y; Wada S
    Med Biol Eng Comput; 2017 Sep; 55(9):1605-1619. PubMed ID: 28161877
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inflow boundary conditions for image-based computational hemodynamics: impact of idealized versus measured velocity profiles in the human aorta.
    Morbiducci U; Ponzini R; Gallo D; Bignardi C; Rizzo G
    J Biomech; 2013 Jan; 46(1):102-9. PubMed ID: 23159094
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of Uncertainty of Outlet Boundary Conditions in a Patient-Specific Case of Aortic Coarctation.
    Antonuccio MN; Mariotti A; Fanni BM; Capellini K; Capelli C; Sauvage E; Celi S
    Ann Biomed Eng; 2021 Dec; 49(12):3494-3507. PubMed ID: 34431017
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of Subject-Specific, Spatially Reduced, and Idealized Boundary Conditions on the Predicted Hemodynamic Environment in the Murine Aorta.
    Smith KA; Merchant SS; Hsu EW; Timmins LH
    Ann Biomed Eng; 2021 Dec; 49(12):3255-3266. PubMed ID: 34528150
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of Parent Artery Segmentation and Boundary Conditions on Hemodynamic Characteristics of Intracranial Aneurysms.
    Hua Y; Oh JH; Kim YB
    Yonsei Med J; 2015 Sep; 56(5):1328-37. PubMed ID: 26256976
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluating the accuracy of cerebrovascular computational fluid dynamics modeling through time-resolved experimental validation.
    Luisi CA; Witter TL; Nikoubashman O; Wiesmann M; Steinseifer U; Neidlin M
    Sci Rep; 2024 Apr; 14(1):8194. PubMed ID: 38589554
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modelling lower-limb peripheral arterial disease using clinically available datasets: impact of inflow boundary conditions on hemodynamic indices for restenosis prediction.
    Ninno F; Chiastra C; Colombo M; Dardik A; Strosberg D; Aboian E; Tsui J; Bartlett M; Balabani S; Díaz-Zuccarini V
    Comput Methods Programs Biomed; 2024 Jun; 251():108214. PubMed ID: 38759252
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Choice of in vivo versus idealized velocity boundary conditions influences physiologically relevant flow patterns in a subject-specific simulation of flow in the human carotid bifurcation.
    Wake AK; Oshinski JN; Tannenbaum AR; Giddens DP
    J Biomech Eng; 2009 Feb; 131(2):021013. PubMed ID: 19102572
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the use of in vivo measured flow rates as boundary conditions for image-based hemodynamic models of the human aorta: implications for indicators of abnormal flow.
    Gallo D; De Santis G; Negri F; Tresoldi D; Ponzini R; Massai D; Deriu MA; Segers P; Verhegghe B; Rizzo G; Morbiducci U
    Ann Biomed Eng; 2012 Mar; 40(3):729-41. PubMed ID: 22009313
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-modality image-based computational analysis of haemodynamics in aortic dissection.
    Dillon-Murphy D; Noorani A; Nordsletten D; Figueroa CA
    Biomech Model Mechanobiol; 2016 Aug; 15(4):857-76. PubMed ID: 26416312
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Validation of the coupling of magnetic resonance imaging velocity measurements with computational fluid dynamics in a U bend.
    Glor FP; Westenberg JJ; Vierendeels J; Danilouchkine M; Verdonck P
    Artif Organs; 2002 Jul; 26(7):622-35. PubMed ID: 12081521
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In-vivo assessment of the morphology and hemodynamic functions of the BioValsalva™ composite valve-conduit graft using cardiac magnetic resonance imaging and computational modelling technology.
    Kidher E; Cheng Z; Jarral OA; O'Regan DP; Xu XY; Athanasiou T
    J Cardiothorac Surg; 2014 Dec; 9():193. PubMed ID: 25488105
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational hemodynamics in the human aorta: a computational fluid dynamics study of three cases with patient-specific geometries and inflow rates.
    Karmonik C; Bismuth JX; Davies MG; Lumsden AB
    Technol Health Care; 2008; 16(5):343-54. PubMed ID: 19126973
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neonatal aortic arch hemodynamics and perfusion during cardiopulmonary bypass.
    Pekkan K; Dur O; Sundareswaran K; Kanter K; Fogel M; Yoganathan A; Undar A
    J Biomech Eng; 2008 Dec; 130(6):061012. PubMed ID: 19045541
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.