BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 28673666)

  • 1. The peculiar properties of the falx and tentorium in brain injury biomechanics.
    Ho J; Zhou Z; Li X; Kleiven S
    J Biomech; 2017 Jul; 60():243-247. PubMed ID: 28673666
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measurement of brain simulant strains in head surrogate under impact loading.
    Singh A; Ganpule SG; Khan MK; Iqbal MA
    Biomech Model Mechanobiol; 2021 Dec; 20(6):2319-2334. PubMed ID: 34455505
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lateral impacts correlate with falx cerebri displacement and corpus callosum trauma in sports-related concussions.
    Hernandez F; Giordano C; Goubran M; Parivash S; Grant G; Zeineh M; Camarillo D
    Biomech Model Mechanobiol; 2019 Jun; 18(3):631-649. PubMed ID: 30859404
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface reconstruction from routine CT-scan shows large anatomical variations of falx cerebri and tentorium cerebelli.
    Staquet H; Francois PM; Sandoz B; Laporte S; Decq P; Goutagny S
    Acta Neurochir (Wien); 2021 Mar; 163(3):607-613. PubMed ID: 32034496
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Finite element analysis of DAI animal model caused by nonimpact with half bound head in cats].
    Chen G; Gao L; Fan Y; Jiang W; He N; Hui G; Deng H
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2002 Jun; 19(2):200-3. PubMed ID: 12224280
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regional brain strains and role of falx in lateral impact-induced head rotational acceleration.
    Li J; Zhang J; Yoganandan N; Pintar F; Gennarelli T
    Biomed Sci Instrum; 2007; 43():24-9. PubMed ID: 17487052
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a finite element human head model partially validated with thirty five experimental cases.
    Mao H; Zhang L; Jiang B; Genthikatti VV; Jin X; Zhu F; Makwana R; Gill A; Jandir G; Singh A; Yang KH
    J Biomech Eng; 2013 Nov; 135(11):111002. PubMed ID: 24065136
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of traumatic brain injuries using the next generation of simulated injury monitor (SIMon) finite element head model.
    Takhounts EG; Ridella SA; Hasija V; Tannous RE; Campbell JQ; Malone D; Danelson K; Stitzel J; Rowson S; Duma S
    Stapp Car Crash J; 2008 Nov; 52():1-31. PubMed ID: 19085156
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation of role of falx and tentorium on brain simulant strain under impact loading.
    Singh A; Harmukh A; Ganpule SG
    J Biomech; 2022 Nov; 144():111347. PubMed ID: 36274567
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of anteroposterior head-neck responses during severe frontal impacts using a brain-spinal cord complex FE model.
    Kimpara H; Nakahira Y; Iwamoto M; Miki K; Ichihara K; Kawano S; Taguchi T
    Stapp Car Crash J; 2006 Nov; 50():509-44. PubMed ID: 17311175
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A 3D Computational Head Model Under Dynamic Head Rotation and Head Extension Validated Using Live Human Brain Data, Including the Falx and the Tentorium.
    Lu YC; Daphalapurkar NP; Knutsen AK; Glaister J; Pham DL; Butman JA; Prince JL; Bayly PV; Ramesh KT
    Ann Biomed Eng; 2019 Sep; 47(9):1923-1940. PubMed ID: 30767132
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a Subhuman Primate Brain Finite Element Model to Investigate Brain Injury Thresholds Induced by Head Rotation.
    Arora T; Zhang L; Prasad P
    Stapp Car Crash J; 2019 Nov; 63():65-82. PubMed ID: 32311052
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The influence of anisotropy on brain injury prediction.
    Giordano C; Cloots RJ; van Dommelen JA; Kleiven S
    J Biomech; 2014 Mar; 47(5):1052-9. PubMed ID: 24462379
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Development and validation of head finite element model for traffic injury analysis].
    Xu W; Yang J
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2008 Jun; 25(3):556-61. PubMed ID: 18693430
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automatic falx cerebri and tentorium cerebelli segmentation from Magnetic Resonance Images.
    Glaister J; Carass A; Pham DL; Butman JA; Prince JL
    Proc SPIE Int Soc Opt Eng; 2017 Feb; 10137():. PubMed ID: 28943701
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The state of head injury biomechanics: past, present, and future: part 1.
    Goldsmith W
    Crit Rev Biomed Eng; 2001; 29(5-6):441-600. PubMed ID: 12434929
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intraoperative brain shift prediction using a 3D inhomogeneous patient-specific finite element model.
    Hu J; Jin X; Lee JB; Zhang L; Chaudhary V; Guthikonda M; Yang KH; King AI
    J Neurosurg; 2007 Jan; 106(1):164-9. PubMed ID: 17236503
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mild traumatic brain injury predictors based on angular accelerations during impacts.
    Kimpara H; Iwamoto M
    Ann Biomed Eng; 2012 Jan; 40(1):114-26. PubMed ID: 21994065
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Applying DTI white matter orientations to finite element head models to examine diffuse TBI under high rotational accelerations.
    Colgan NC; Gilchrist MD; Curran KM
    Prog Biophys Mol Biol; 2010 Dec; 103(2-3):304-9. PubMed ID: 20869383
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A study on correlation of pedestrian head injuries with physical parameters using in-depth traffic accident data and mathematical models.
    Huang J; Peng Y; Yang J; Otte D; Wang B
    Accid Anal Prev; 2018 Oct; 119():91-103. PubMed ID: 30015170
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.