These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 28674335)

  • 21. Role of various nanoparticles in photodynamic therapy and detection methods of singlet oxygen.
    Krajczewski J; Rucińska K; Townley HE; Kudelski A
    Photodiagnosis Photodyn Ther; 2019 Jun; 26():162-178. PubMed ID: 30914390
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Methods to Unravel Pathways of Reactive Oxygen Species in the Photodynamic Inactivation of Bacteria.
    Gsponer NS; Durantini EN
    Methods Mol Biol; 2021; 2202():111-124. PubMed ID: 32857351
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Single-walled carbon nanotubes as near-infrared optical biosensors for life sciences and biomedicine.
    Jain A; Homayoun A; Bannister CW; Yum K
    Biotechnol J; 2015 Mar; 10(3):447-59. PubMed ID: 25676253
    [TBL] [Abstract][Full Text] [Related]  

  • 24. First demonstration of gold nanorods-mediated photodynamic therapeutic destruction of tumors via near infra-red light activation.
    Vankayala R; Huang YK; Kalluru P; Chiang CS; Hwang KC
    Small; 2014 Apr; 10(8):1612-22. PubMed ID: 24339243
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Visible light-induced singlet oxygen-mediated intracellular disassembly of polymeric micelles co-loaded with a photosensitizer and an anticancer drug for enhanced photodynamic therapy.
    Saravanakumar G; Lee J; Kim J; Kim WJ
    Chem Commun (Camb); 2015 Jun; 51(49):9995-8. PubMed ID: 25998105
    [TBL] [Abstract][Full Text] [Related]  

  • 26. S-nitrosocysteine-decorated PbS QDs/TiO2 nanotubes for enhanced production of singlet oxygen.
    Ratanatawanate C; Chyao A; Balkus KJ
    J Am Chem Soc; 2011 Mar; 133(10):3492-7. PubMed ID: 21341648
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cancerous cell death from sensitizer free photoactivation of singlet oxygen.
    Anquez F; El Yazidi-Belkoura I; Randoux S; Suret P; Courtade E
    Photochem Photobiol; 2012; 88(1):167-74. PubMed ID: 22044317
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Quantum dot-based energy transfer: perspectives and potential for applications in photodynamic therapy.
    Samia AC; Dayal S; Burda C
    Photochem Photobiol; 2006; 82(3):617-25. PubMed ID: 16475871
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Red-emitting upconverting nanoparticles for photodynamic therapy in cancer cells under near-infrared excitation.
    Tian G; Ren W; Yan L; Jian S; Gu Z; Zhou L; Jin S; Yin W; Li S; Zhao Y
    Small; 2013 Jun; 9(11):1929-38, 1928. PubMed ID: 23239556
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Perfluorocarbon nanoparticles enhance reactive oxygen levels and tumour growth inhibition in photodynamic therapy.
    Cheng Y; Cheng H; Jiang C; Qiu X; Wang K; Huan W; Yuan A; Wu J; Hu Y
    Nat Commun; 2015 Nov; 6():8785. PubMed ID: 26525216
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mesoporous-silica-coated up-conversion fluorescent nanoparticles for photodynamic therapy.
    Qian HS; Guo HC; Ho PC; Mahendran R; Zhang Y
    Small; 2009 Oct; 5(20):2285-90. PubMed ID: 19598161
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Carbon nanodots with a controlled N structure by a solvothermal method for generation of reactive oxygen species under visible light.
    Saita S; Kawasaki H
    Luminescence; 2023 Feb; 38(2):127-135. PubMed ID: 36581317
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Photoreactivity of carboxylated single-walled carbon nanotubes in sunlight: reactive oxygen species production in water.
    Chen CY; Jafvert CT
    Environ Sci Technol; 2010 Sep; 44(17):6674-9. PubMed ID: 20687543
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Photodynamic therapy against cyanobacteria.
    Drábková M; Marsálek B; Admiraal W
    Environ Toxicol; 2007 Feb; 22(1):112-5. PubMed ID: 17295267
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Light-independent reactive oxygen species (ROS) formation through electron transfer from carboxylated single-walled carbon nanotubes in water.
    Hsieh HS; Wu R; Jafvert CT
    Environ Sci Technol; 2014 Oct; 48(19):11330-6. PubMed ID: 25171301
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A new near infrared photosensitizing nanoplatform containing blue-emitting up-conversion nanoparticles and hypocrellin A for photodynamic therapy of cancer cells.
    Jin S; Zhou L; Gu Z; Tian G; Yan L; Ren W; Yin W; Liu X; Zhang X; Hu Z; Zhao Y
    Nanoscale; 2013 Dec; 5(23):11910-8. PubMed ID: 24129918
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Anticancer drug released from near IR-activated prodrug overcomes spatiotemporal limits of singlet oxygen.
    Rajaputra P; Bio M; Nkepang G; Thapa P; Woo S; You Y
    Bioorg Med Chem; 2016 Apr; 24(7):1540-9. PubMed ID: 26928287
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The antimicrobial activity of photodynamic therapy against Streptococcus mutans using different photosensitizers.
    Rolim JP; de-Melo MA; Guedes SF; Albuquerque-Filho FB; de Souza JR; Nogueira NA; Zanin IC; Rodrigues LK
    J Photochem Photobiol B; 2012 Jan; 106():40-6. PubMed ID: 22070899
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Plasmon-mediated generation of reactive oxygen species from near-infrared light excited gold nanocages for photodynamic therapy in vitro.
    Gao L; Liu R; Gao F; Wang Y; Jiang X; Gao X
    ACS Nano; 2014 Jul; 8(7):7260-71. PubMed ID: 24992260
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Revisiting the laser dye Styryl-13 as a reference near-infrared fluorophore: implications for the photoluminescence quantum yields of semiconducting single-walled carbon nanotubes.
    Stürzl N; Lebedkin S; Kappes MM
    J Phys Chem A; 2009 Sep; 113(38):10238-40. PubMed ID: 19757846
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.