BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

285 related articles for article (PubMed ID: 28674679)

  • 1. The Metabolic Phenotype of Prostate Cancer.
    Eidelman E; Twum-Ampofo J; Ansari J; Siddiqui MM
    Front Oncol; 2017; 7():131. PubMed ID: 28674679
    [TBL] [Abstract][Full Text] [Related]  

  • 2. More advantages in detecting bone and soft tissue metastases from prostate cancer using
    Pianou NK; Stavrou PZ; Vlontzou E; Rondogianni P; Exarhos DN; Datseris IE
    Hell J Nucl Med; 2019; 22(1):6-9. PubMed ID: 30843003
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The clinical relevance of the metabolism of prostate cancer; zinc and tumor suppression: connecting the dots.
    Costello LC; Franklin RB
    Mol Cancer; 2006 May; 5():17. PubMed ID: 16700911
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel role of zinc in the regulation of prostate citrate metabolism and its implications in prostate cancer.
    Costello LC; Franklin RB
    Prostate; 1998 Jun; 35(4):285-96. PubMed ID: 9609552
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mitochondrial function, zinc, and intermediary metabolism relationships in normal prostate and prostate cancer.
    Costello LC; Franklin RB; Feng P
    Mitochondrion; 2005 Jun; 5(3):143-53. PubMed ID: 16050980
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mitochondrial aconitase and citrate metabolism in malignant and nonmalignant human prostate tissues.
    Singh KK; Desouki MM; Franklin RB; Costello LC
    Mol Cancer; 2006 Apr; 5():14. PubMed ID: 16595004
    [TBL] [Abstract][Full Text] [Related]  

  • 7. NMR-based metabolomics analysis identifies discriminatory metabolic disturbances in tissue and biofluid samples for progressive prostate cancer.
    Zheng H; Dong B; Ning J; Shao X; Zhao L; Jiang Q; Ji H; Cai A; Xue W; Gao H
    Clin Chim Acta; 2020 Feb; 501():241-251. PubMed ID: 31758937
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The intermediary metabolism of the prostate: a key to understanding the pathogenesis and progression of prostate malignancy.
    Costello LC; Franklin RB
    Oncology; 2000 Nov; 59(4):269-82. PubMed ID: 11096338
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic targets for potential prostate cancer therapeutics.
    Twum-Ampofo J; Fu DX; Passaniti A; Hussain A; Siddiqui MM
    Curr Opin Oncol; 2016 May; 28(3):241-7. PubMed ID: 26907571
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Zinc as an anti-tumor agent in prostate cancer and in other cancers.
    Franklin RB; Costello LC
    Arch Biochem Biophys; 2007 Jul; 463(2):211-7. PubMed ID: 17400177
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lipogenic effects of androgen signaling in normal and malignant prostate.
    Mah CY; Nassar ZD; Swinnen JV; Butler LM
    Asian J Urol; 2020 Jul; 7(3):258-270. PubMed ID: 32742926
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 1,25(OH)
    Abu El Maaty MA; Alborzinia H; Khan SJ; Büttner M; Wölfl S
    Biochim Biophys Acta Mol Cell Res; 2017 Oct; 1864(10):1618-1630. PubMed ID: 28651973
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Concepts of citrate production and secretion by prostate. 1. Metabolic relationships.
    Costello LC; Franklin RB
    Prostate; 1991; 18(1):25-46. PubMed ID: 1987578
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Zinc and zinc transporters in normal prostate and the pathogenesis of prostate cancer.
    Franklin RB; Milon B; Feng P; Costello LC
    Front Biosci; 2005 Sep; 10():2230-9. PubMed ID: 15970489
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multidisciplinary approach to prostatitis.
    Magri V; Boltri M; Cai T; Colombo R; Cuzzocrea S; De Visschere P; Giuberti R; Granatieri CM; Latino MA; Larganà G; Leli C; Maierna G; Marchese V; Massa E; Matteelli A; Montanari E; Morgia G; Naber KG; Papadouli V; Perletti G; Rekleiti N; Russo GI; Sensini A; Stamatiou K; Trinchieri A; Wagenlehner FME
    Arch Ital Urol Androl; 2019 Jan; 90(4):227-248. PubMed ID: 30655633
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cell metabolomics identify regulatory pathways and targets of magnoline against prostate cancer.
    Sun H; Zhang AH; Liu SB; Qiu S; Li XN; Zhang TL; Liu L; Wang XJ
    J Chromatogr B Analyt Technol Biomed Life Sci; 2018 Dec; 1102-1103():143-151. PubMed ID: 30391728
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of the perturbed metabolic pathways associating with prostate cancer cells and anticancer affects of obacunone.
    Xie J; Zhang AH; Qiu S; Zhang TL; Li XN; Yan GL; Sun H; Liu L; Wang XJ
    J Proteomics; 2019 Aug; 206():103447. PubMed ID: 31326558
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioenergetic theory of prostate malignancy.
    Costello LC; Franklin RB
    Prostate; 1994 Sep; 25(3):162-6. PubMed ID: 7520580
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comprehensive review of the role of zinc in normal prostate function and metabolism; and its implications in prostate cancer.
    Costello LC; Franklin RB
    Arch Biochem Biophys; 2016 Dec; 611():100-112. PubMed ID: 27132038
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Going malignant: the hypoxia-cancer connection in the prostate.
    Hochachka PW; Rupert JL; Goldenberg L; Gleave M; Kozlowski P
    Bioessays; 2002 Aug; 24(8):749-57. PubMed ID: 12210536
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.