These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 28674921)

  • 21. Criterion validation of surface EMG variables as fatigue indicators using peak torque: a study of repetitive maximum isokinetic knee extensions.
    Gerdle B; Larsson B; Karlsson S
    J Electromyogr Kinesiol; 2000 Aug; 10(4):225-32. PubMed ID: 10969195
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mechanisms for the age-related increase in fatigability of the knee extensors in old and very old adults.
    Sundberg CW; Kuplic A; Hassanlouei H; Hunter SK
    J Appl Physiol (1985); 2018 Jul; 125(1):146-158. PubMed ID: 29494293
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fatigue and the electromechanical efficiency of the vastus medialis and vastus lateralis muscles.
    Ebersole KT; Malek DM
    J Athl Train; 2008; 43(2):152-6. PubMed ID: 18345339
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Torque and power of knee extensor muscles at individualized isokinetic angular velocities.
    Hong J; Woo J; Jeon J
    J Int Med Res; 2024 Jul; 52(7):3000605241262186. PubMed ID: 39053453
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Gender-specific knee extensor torque, flexor torque, and muscle fatigue responses during maximal effort contractions.
    Pincivero DM; Gandaio CM; Ito Y
    Eur J Appl Physiol; 2003 Apr; 89(2):134-41. PubMed ID: 12665976
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mechanomyography responses characterize altered muscle function during electrical stimulation-evoked cycling in individuals with spinal cord injury.
    Islam MA; Hamzaid NA; Ibitoye MO; Hasnan N; Wahab AKA; Davis GM
    Clin Biomech (Bristol, Avon); 2018 Oct; 58():21-27. PubMed ID: 30005423
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of electrical stimulation parameters on fatigue in skeletal muscle.
    Gorgey AS; Black CD; Elder CP; Dudley GA
    J Orthop Sports Phys Ther; 2009 Sep; 39(9):684-92. PubMed ID: 19721215
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Co-activation and tension-regulating phenomena during isokinetic knee extension in sedentary and highly skilled humans.
    Amiridis IG; Martin A; Morlon B; Martin L; Cometti G; Pousson M; van Hoecke J
    Eur J Appl Physiol Occup Physiol; 1996; 73(1-2):149-56. PubMed ID: 8861684
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Design of an isokinetic knee dynamometer for evaluation of functional electrical stimulation strategies.
    Aksöz EA; Laubacher M; Riener R; Hunt KJ
    Med Eng Phys; 2019 Nov; 73():100-106. PubMed ID: 31421979
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fatigue and recovery of power and isometric torque following isotonic knee extensions.
    Cheng AJ; Rice CL
    J Appl Physiol (1985); 2005 Oct; 99(4):1446-52. PubMed ID: 15976360
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Test-retest reliability of EMG and peak torque during repetitive maximum concentric knee extensions.
    Larsson B; Karlsson S; Eriksson M; Gerdle B
    J Electromyogr Kinesiol; 2003 Jun; 13(3):281-7. PubMed ID: 12706607
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Reduction of muscle fatigue in man by cyclical stimulation.
    Pournezam M; Andrews BJ; Baxendale RH; Phillips GF; Paul JP
    J Biomed Eng; 1988 Apr; 10(2):196-200. PubMed ID: 3361879
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparison of recovery strategies on maximal force-generating capacity and electromyographic activity level of the knee extensor muscles.
    Zarrouk N; Rebai H; Yahia A; Souissi N; Hug F; Dogui M
    J Athl Train; 2011; 46(4):386-94. PubMed ID: 21944070
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparing Fatigue Reducing Stimulation Strategies During Cycling Induced by Functional Electrical Stimulation: a Case Study with one Spinal Cord Injured Subject.
    Ceroni I; Ferrante S; Conti F; No SJ; Gasperina SD; Dell'Eva F; Pedrocchi A; Tarabini M; Ambrosini E
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():6394-6397. PubMed ID: 34892575
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of transcutaneous electrical acupoint stimulation on fatigue recovery of the quadriceps.
    So RC; Ng JK; Ng GY
    Eur J Appl Physiol; 2007 Aug; 100(6):693-700. PubMed ID: 17546460
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A generic model of real-world non-ideal behaviour of FES-induced muscle contractions: simulation tool.
    Lynch CL; Graham GM; Popovic MR
    J Neural Eng; 2011 Aug; 8(4):046034. PubMed ID: 21757801
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of tendon vibration during wide-pulse neuromuscular electrical stimulation (NMES) on muscle force production in people with spinal cord injury (SCI).
    Bochkezanian V; Newton RU; Trajano GS; Vieira A; Pulverenti TS; Blazevich AJ
    BMC Neurol; 2018 Feb; 18(1):17. PubMed ID: 29433467
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of old age on human skeletal muscle force-velocity and fatigue properties.
    Callahan DM; Kent-Braun JA
    J Appl Physiol (1985); 2011 Nov; 111(5):1345-52. PubMed ID: 21868683
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of antagonist muscle fatigue on knee extension torque.
    Beltman JG; Sargeant AJ; Ball D; Maganaris CN; de Haan A
    Pflugers Arch; 2003 Sep; 446(6):735-41. PubMed ID: 12851821
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Electrode position markedly affects knee torque in tetanic, stimulated contractions.
    Vieira TM; Potenza P; Gastaldi L; Botter A
    Eur J Appl Physiol; 2016 Feb; 116(2):335-42. PubMed ID: 26526290
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.