These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 28675049)
1. Importance of material parameters and strain energy function on the wall stresses in the left ventricle. Behdadfar S; Navarro L; Sundnes J; Maleckar MM; Avril S Comput Methods Biomech Biomed Engin; 2017 Aug; 20(11):1223-1232. PubMed ID: 28675049 [TBL] [Abstract][Full Text] [Related]
2. Bi-ventricular finite element model of right ventricle overload in the healthy rat heart. Masithulela F Biomed Mater Eng; 2016 Nov; 27(5):507-525. PubMed ID: 27885998 [TBL] [Abstract][Full Text] [Related]
3. Sensitivity of stress and strain calculations to passive material parameters in cardiac mechanical models using unloaded geometries. Kallhovd S; Sundnes J; Wall ST Comput Methods Biomech Biomed Engin; 2019 May; 22(6):664-675. PubMed ID: 30822148 [TBL] [Abstract][Full Text] [Related]
4. Adaptation of a rabbit myocardium material model for use in a canine left ventricle simulation study. Doyle MG; Tavoularis S; Bourgault Y J Biomech Eng; 2010 Apr; 132(4):041006. PubMed ID: 20387969 [TBL] [Abstract][Full Text] [Related]
5. Computational modelling of left-ventricular diastolic mechanics: effect of fibre orientation and right-ventricle topology. Palit A; Bhudia SK; Arvanitis TN; Turley GA; Williams MA J Biomech; 2015 Feb; 48(4):604-612. PubMed ID: 25596634 [TBL] [Abstract][Full Text] [Related]
6. The influence of left-ventricular shape on end-diastolic fiber stress and strain. Choi HF; D'hooge J; Rademakers FE; Claus P Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():2887-90. PubMed ID: 19964050 [TBL] [Abstract][Full Text] [Related]
7. A finite element model of myocardial infarction using a composite material approach. Haddad SMH; Samani A Comput Methods Biomech Biomed Engin; 2018 Jan; 21(1):33-46. PubMed ID: 29252005 [TBL] [Abstract][Full Text] [Related]
8. Development of an in vivo method for determining material properties of passive myocardium. Remme EW; Hunter PJ; Smiseth O; Stevens C; Rabben SI; Skulstad H; Angelsen BB J Biomech; 2004 May; 37(5):669-78. PubMed ID: 15046996 [TBL] [Abstract][Full Text] [Related]
9. Residual stress produced by ventricular volume reduction surgery has little effect on ventricular function and mechanics: a finite element model study. Guccione JM; Moonly SM; Wallace AW; Ratcliffe MB J Thorac Cardiovasc Surg; 2001 Sep; 122(3):592-9. PubMed ID: 11547315 [TBL] [Abstract][Full Text] [Related]
10. Influence of left-ventricular shape on passive filling properties and end-diastolic fiber stress and strain. Choi HF; D'hooge J; Rademakers FE; Claus P J Biomech; 2010 Jun; 43(9):1745-53. PubMed ID: 20227697 [TBL] [Abstract][Full Text] [Related]
11. Assessment of wall stresses and mechanical heart power in the left ventricle: Finite element modeling versus Laplace analysis. Gsell MAF; Augustin CM; Prassl AJ; Karabelas E; Fernandes JF; Kelm M; Goubergrits L; Kuehne T; Plank G Int J Numer Method Biomed Eng; 2018 Dec; 34(12):e3147. PubMed ID: 30151998 [TBL] [Abstract][Full Text] [Related]
12. Distribution of active fiber stress at the beginning of ejection depends on left-ventricular shape. Choi HF; D'hooge J; Rademakers FE; Claus P Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():2638-41. PubMed ID: 21096187 [TBL] [Abstract][Full Text] [Related]
13. In vivo assessment of nonlinear myocardial deformation using finite element analysis and three-dimensional echocardiographic reconstruction. Gotteiner NL; Han G; Chandran KB; Vonesh MJ; Bresticker M; Greene R; Oba J; Kane BJ; Joob A; McPherson DD Am J Card Imaging; 1995 Jul; 9(3):185-94. PubMed ID: 7549359 [TBL] [Abstract][Full Text] [Related]
14. Microstructure-based finite element model of left ventricle passive inflation. Xi C; Kassab GS; Lee LC Acta Biomater; 2019 May; 90():241-253. PubMed ID: 30980939 [TBL] [Abstract][Full Text] [Related]
15. Ventricular mechanics in diastole: material parameter sensitivity. Stevens C; Remme E; LeGrice I; Hunter P J Biomech; 2003 May; 36(5):737-48. PubMed ID: 12695004 [TBL] [Abstract][Full Text] [Related]
16. A finite element model of the human left ventricular systole. Dorri F; Niederer PF; Lunkenheimer PP Comput Methods Biomech Biomed Engin; 2006 Oct; 9(5):319-41. PubMed ID: 17132618 [TBL] [Abstract][Full Text] [Related]
18. In vivo estimation of passive biomechanical properties of human myocardium. Palit A; Bhudia SK; Arvanitis TN; Turley GA; Williams MA Med Biol Eng Comput; 2018 Sep; 56(9):1615-1631. PubMed ID: 29479659 [TBL] [Abstract][Full Text] [Related]
19. Application of feed forward and recurrent neural networks in simulation of left ventricular mechanics. Dabiri Y; Van der Velden A; Sack KL; Choy JS; Guccione JM; Kassab GS Sci Rep; 2020 Dec; 10(1):22298. PubMed ID: 33339836 [TBL] [Abstract][Full Text] [Related]
20. Structural finite deformation model of the left ventricle during diastole and systole. Nevo E; Lanir Y J Biomech Eng; 1989 Nov; 111(4):342-9. PubMed ID: 2486374 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]