These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 28675055)

  • 1. Biodiversity characterisation and hydrodynamic consequences of marine fouling communities on marine renewable energy infrastructure in the Orkney Islands Archipelago, Scotland, UK.
    Want A; Crawford R; Kakkonen J; Kiddie G; Miller S; Harris RE; Porter JS
    Biofouling; 2017 Aug; 33(7):567-579. PubMed ID: 28675055
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of coating type, colour, and deployment timing on biofouling by native and non-native species in a marine renewable energy context.
    Nall CR; Schläppy ML; Cottier-Cook EJ; Guerin AJ
    Biofouling; 2022 Aug; 38(7):729-745. PubMed ID: 36100232
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterisation of the biofouling community on a floating wave energy device.
    Nall CR; Schläppy ML; Guerin AJ
    Biofouling; 2017 May; 33(5):379-396. PubMed ID: 28508709
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sea-trial verification of a novel system for monitoring biofouling and testing anti-fouling coatings in highly energetic environments targeted by the marine renewable energy industry.
    Want A; Bell MC; Harris RE; Hull MQ; Long CR; Porter JS
    Biofouling; 2021 Apr; 37(4):433-451. PubMed ID: 34121520
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatial and temporal benthic species assemblage responses with a deployed marine tidal energy device: a small scaled study.
    Broadhurst M; Orme CD
    Mar Environ Res; 2014 Aug; 99():76-84. PubMed ID: 24840255
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biofouling community composition across a range of environmental conditions and geographical locations suitable for floating marine renewable energy generation.
    Macleod AK; Stanley MS; Day JG; Cook EJ
    Biofouling; 2016; 32(3):261-76. PubMed ID: 26900732
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Epibenthic assessment of a renewable tidal energy site.
    Sheehan EV; Gall SC; Cousens SL; Attrill MJ
    ScientificWorldJournal; 2013; 2013():906180. PubMed ID: 23476152
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Do Changes in Current Flow as a Result of Arrays of Tidal Turbines Have an Effect on Benthic Communities?
    Kregting L; Elsaesser B; Kennedy R; Smyth D; O'Carroll J; Savidge G
    PLoS One; 2016; 11(8):e0161279. PubMed ID: 27560657
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A quantitative, non-destructive methodology for habitat characterisation and benthic monitoring at offshore renewable energy developments.
    Sheehan EV; Stevens TF; Attrill MJ
    PLoS One; 2010 Dec; 5(12):e14461. PubMed ID: 21206748
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of containerships as transfer mechanisms of marine biofouling species.
    Davidson IC; Brown CW; Sytsma MD; Ruiz GM
    Biofouling; 2009 Oct; 25(7):645-55. PubMed ID: 20183123
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metal pollution affects both native and non-indigenous biofouling recruitment in a subtropical island system.
    Ramalhosa P; Gestoso I; Duarte B; Caçador I; Canning-Clode J
    Mar Pollut Bull; 2019 Apr; 141():373-386. PubMed ID: 30955747
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The influence of antifouling practices on marine invasions.
    Piola RF; Dafforn KA; Johnston EL
    Biofouling; 2009 Oct; 25(7):633-44. PubMed ID: 20183122
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of hydrodynamic stress on the frictional drag of biofouling communities.
    Hunsucker JT; Hunsucker KZ; Gardner H; Swain G
    Biofouling; 2016 Nov; 32(10):1209-1221. PubMed ID: 27744722
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electricity generation: options for reduction in carbon emissions.
    Whittington HW
    Philos Trans A Math Phys Eng Sci; 2002 Aug; 360(1797):1653-68. PubMed ID: 12460490
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Risk factors for fouling biomass: evidence from small vessels in Australia.
    Lane SE; Hollings T; Hayes KR; McEnnulty FR; Green M; Georgiades E; Robinson AP
    Biofouling; 2018 Oct; 34(9):1032-1045. PubMed ID: 30656979
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reconciling Biodiversity Conservation and Widespread Deployment of Renewable Energy Technologies in the UK.
    Gove B; Williams LJ; Beresford AE; Roddis P; Campbell C; Teuten E; Langston RH; Bradbury RB
    PLoS One; 2016; 11(5):e0150956. PubMed ID: 27224050
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The impact and control of biofouling in marine aquaculture: a review.
    Fitridge I; Dempster T; Guenther J; de Nys R
    Biofouling; 2012; 28(7):649-69. PubMed ID: 22775076
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biocontrol of fouling pests: Effect of diversity, identity and density of control agents.
    Atalah J; Newcombe EM; Zaiko A
    Mar Environ Res; 2016 Apr; 115():20-7. PubMed ID: 26845376
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fulfilling EU Laws to Ensure Marine Mammal Protection During Marine Renewable Construction Operations in Scotland.
    Dolman SJ; Green M; Gregerson S; Weir CR
    Adv Exp Med Biol; 2016; 875():223-30. PubMed ID: 26610963
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ocean zoning for conservation, fisheries and marine renewable energy: assessing trade-offs and co-location opportunities.
    Yates KL; Schoeman DS; Klein CJ
    J Environ Manage; 2015 Apr; 152():201-9. PubMed ID: 25684567
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.