These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 28675588)

  • 21. Sea level rise drives increased tidal flooding frequency at tide gauges along the U.S. East and Gulf Coasts: Projections for 2030 and 2045.
    Dahl KA; Fitzpatrick MF; Spanger-Siegfried E
    PLoS One; 2017; 12(2):e0170949. PubMed ID: 28158209
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biotic interactions mediate the expansion of black mangrove (Avicennia germinans) into salt marshes under climate change.
    Guo H; Zhang Y; Lan Z; Pennings SC
    Glob Chang Biol; 2013 Sep; 19(9):2765-74. PubMed ID: 23580161
    [TBL] [Abstract][Full Text] [Related]  

  • 23. How livestock and flooding mediate the ecological integrity of working forests in Amazon River floodplains.
    Lucas CM; Sheikh P; Gagnon PR; Mcgrath DG
    Ecol Appl; 2016 Jan; 26(1):190-202. PubMed ID: 27039519
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Increasing tidal inundation corresponds to rising porewater nutrient concentrations in a southeastern U.S. salt marsh.
    Krask JL; Buck TL; Dunn RP; Smith EM
    PLoS One; 2022; 17(11):e0278215. PubMed ID: 36441803
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The contribution of mangrove expansion to salt marsh loss on the Texas Gulf Coast.
    Armitage AR; Highfield WE; Brody SD; Louchouarn P
    PLoS One; 2015; 10(5):e0125404. PubMed ID: 25946132
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tidal marsh plant responses to elevated CO2 , nitrogen fertilization, and sea level rise.
    Adam Langley J; Mozdzer TJ; Shepard KA; Hagerty SB; Patrick Megonigal J
    Glob Chang Biol; 2013 May; 19(5):1495-503. PubMed ID: 23504873
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The roles of seedling salt tolerance and resprouting in forest zonation on thewest coast of Florida, USA.
    Williams K; Meads MV; Sauerbrey DA
    Am J Bot; 1998 Dec; 85(12):1745-52. PubMed ID: 21680335
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Response of Plant Height, Species Richness and Aboveground Biomass to Flooding Gradient along Vegetation Zones in Floodplain Wetlands, Northeast China.
    Lou Y; Pan Y; Gao C; Jiang M; Lu X; Xu YJ
    PLoS One; 2016; 11(4):e0153972. PubMed ID: 27097325
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Use of a Florida Gulf Coast Barrier Island by Spring Trans-Gulf Migrants and the Projected Effects of Sea Level Rise on Habitat Availability.
    Lester LA; Gutierrez Ramirez M; Kneidel AH; Heckscher CM
    PLoS One; 2016; 11(3):e0148975. PubMed ID: 26934343
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Purple pitcher plant (Sarracenia rosea) Dieback and partial community disassembly following experimental storm surge in a coastal pitcher plant bog.
    Abbott MJ; Battaglia LL
    PLoS One; 2015; 10(4):e0125475. PubMed ID: 25874369
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The gathering storm: optimizing management of coastal ecosystems in the face of a climate-driven threat.
    Hanley ME; Bouma TJ; Mossman HL
    Ann Bot; 2020 Feb; 125(2):197-212. PubMed ID: 31837218
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Asymmetric root distributions reveal press-pulse responses in retreating coastal forests.
    Messerschmidt TC; Langston AK; Kirwan ML
    Ecology; 2021 Oct; 102(10):e03468. PubMed ID: 34241889
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Extreme Precipitation and Flooding Contribute to Sudden Vegetation Dieback in a Coastal Salt Marsh.
    Stagg CL; Osland MJ; Moon JA; Feher LC; Laurenzano C; Lane TC; Jones WR; Hartley SB
    Plants (Basel); 2021 Sep; 10(9):. PubMed ID: 34579374
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Visioning the Future: Scenarios Modeling of the Florida Coastal Everglades.
    Flower H; Rains M; Fitz C
    Environ Manage; 2017 Nov; 60(5):989-1009. PubMed ID: 28779184
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Tidal Marshes across a Chesapeake Bay Subestuary Are Not Keeping up with Sea-Level Rise.
    Beckett LH; Baldwin AH; Kearney MS
    PLoS One; 2016; 11(7):e0159753. PubMed ID: 27467784
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Impact of sea level rise and tidal effects on flux-controlled and partially isolated shallow aquifer on the southeast coast of India.
    Sathish S; Elango L
    Environ Monit Assess; 2019 Jan; 191(2):97. PubMed ID: 30675669
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Simulating the Effects of Sea Level Rise on the Resilience and Migration of Tidal Wetlands along the Hudson River.
    Tabak NM; Laba M; Spector S
    PLoS One; 2016; 11(4):e0152437. PubMed ID: 27043136
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Salt marsh vegetation change during a half-century of experimental nutrient addition and climate-driven controls in Great Sippewissett Marsh.
    Valiela I; Chenoweth K; Lloret J; Teal J; Howes B; Goehringer Toner D
    Sci Total Environ; 2023 Apr; 867():161546. PubMed ID: 36634783
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Palustrine forested wetland vegetation communities change across an elevation gradient, Washington State, USA.
    Hough-Snee N
    PeerJ; 2020; 8():e8903. PubMed ID: 32274272
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Connectivity in coastal systems: Barrier island vegetation influences upland migration in a changing climate.
    Zinnert JC; Via SM; Nettleton BP; Tuley PA; Moore LJ; Stallins JA
    Glob Chang Biol; 2019 Jul; 25(7):2419-2430. PubMed ID: 30932269
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.