These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
230 related articles for article (PubMed ID: 28675588)
41. The vulnerability of Indo-Pacific mangrove forests to sea-level rise. Lovelock CE; Cahoon DR; Friess DA; Guntenspergen GR; Krauss KW; Reef R; Rogers K; Saunders ML; Sidik F; Swales A; Saintilan N; Thuyen le X; Triet T Nature; 2015 Oct; 526(7574):559-63. PubMed ID: 26466567 [TBL] [Abstract][Full Text] [Related]
42. Wetland loss patterns and inundation-productivity relationships prognosticate widespread salt for southern New England. Watson EB; Wigand C; Davey EW; Andrews HM; Bishop J; Raposa KB Estuaries Coast; 2017 May; 40(3):662-681. PubMed ID: 30008627 [TBL] [Abstract][Full Text] [Related]
43. Seeds of change: characterizing the soil seed bank of a migrating salt marsh. Kottler EJ; Gedan K Ann Bot; 2020 Feb; 125(2):335-344. PubMed ID: 31408516 [TBL] [Abstract][Full Text] [Related]
44. Assessing sea-level rise impact on saltwater intrusion into the root zone of a geo-typical area in coastal east-central Florida. Xiao H; Wang D; Medeiros SC; Hagen SC; Hall CR Sci Total Environ; 2018 Jul; 630():211-221. PubMed ID: 29477820 [TBL] [Abstract][Full Text] [Related]
45. Species-specific responses of a marsh-forest ecotone plant community responding to climate change. Jobe JGD; Gedan K Ecology; 2021 Apr; 102(4):e03296. PubMed ID: 33556188 [TBL] [Abstract][Full Text] [Related]
46. Succession, regression and loss: does evidence of saltwater exposure explain recent changes in the tree communities of North Carolina's Coastal Plain? Ury EA; Anderson SM; Peet RK; Bernhardt ES; Wright JP Ann Bot; 2020 Feb; 125(2):255-264. PubMed ID: 30953436 [TBL] [Abstract][Full Text] [Related]
48. Impact of sea level change on coastal soil organic matter, priming effects and prokaryotic community assembly. Dinter T; Geihser S; Gube M; Daniel R; Kuzyakov Y FEMS Microbiol Ecol; 2019 Oct; 95(10):. PubMed ID: 31425573 [TBL] [Abstract][Full Text] [Related]
49. Marshes and Mangroves as Nature-Based Coastal Storm Buffers. Temmerman S; Horstman EM; Krauss KW; Mullarney JC; Pelckmans I; Schoutens K Ann Rev Mar Sci; 2023 Jan; 15():95-118. PubMed ID: 35850492 [TBL] [Abstract][Full Text] [Related]
50. Bird community shifts associated with saltwater exposure in coastal forests at the leading edge of rising sea level. Taillie PJ; Moorman CE; Smart LS; Pacifici K PLoS One; 2019; 14(5):e0216540. PubMed ID: 31071148 [TBL] [Abstract][Full Text] [Related]
51. Early Stages of Sea-Level Rise Lead To Decreased Salt Marsh Plant Diversity through Stronger Competition in Mediterranean-Climate Marshes. Noto AE; Shurin JB PLoS One; 2017; 12(1):e0169056. PubMed ID: 28103271 [TBL] [Abstract][Full Text] [Related]
52. Thermokarst rates intensify due to climate change and forest fragmentation in an Alaskan boreal forest lowland. Lara MJ; Genet H; McGuire AD; Euskirchen ES; Zhang Y; Brown DR; Jorgenson MT; Romanovsky V; Breen A; Bolton WR Glob Chang Biol; 2016 Feb; 22(2):816-29. PubMed ID: 26463267 [TBL] [Abstract][Full Text] [Related]
53. Potential effects of climate change on Florida's Everglades. Nungesser M; Saunders C; Coronado-Molina C; Obeysekera J; Johnson J; McVoy C; Benscoter B Environ Manage; 2015 Apr; 55(4):824-35. PubMed ID: 25549995 [TBL] [Abstract][Full Text] [Related]
54. Effects of sea-level rise on physiological ecology of populations of a ground-dwelling ant. Hooper-Bùi LM; Strecker-Lau RM; Stewart DM; Landry MJ; Papillion AM; Peterson SN; Daniel RA PLoS One; 2020; 15(4):e0223304. PubMed ID: 32302310 [TBL] [Abstract][Full Text] [Related]
56. Seventy years of continuous encroachment substantially increases 'blue carbon' capacity as mangroves replace intertidal salt marshes. Kelleway JJ; Saintilan N; Macreadie PI; Skilbeck CG; Zawadzki A; Ralph PJ Glob Chang Biol; 2016 Mar; 22(3):1097-109. PubMed ID: 26670941 [TBL] [Abstract][Full Text] [Related]
57. New perspective for the upscaling of plant functional response to flooding stress in salt marshes using remote sensing. Vuerich M; Cingano P; Trotta G; Petrussa E; Braidot E; Scarpin D; Bezzi A; Mestroni M; Pellegrini E; Boscutti F Sci Rep; 2024 Mar; 14(1):5472. PubMed ID: 38443548 [TBL] [Abstract][Full Text] [Related]
58. Will a rising sea sink some estuarine wetland ecosystems? Grenfell SE; Callaway RM; Grenfell MC; Bertelli CM; Mendzil AF; Tew I Sci Total Environ; 2016 Jun; 554-555():276-92. PubMed ID: 26956175 [TBL] [Abstract][Full Text] [Related]
59. Disentangling elevation, annual flooding regime and salinity as hydrochemical determinants of halophyte distribution in non-tidal saltmarsh. Vélez-Martín A; Davy AJ; Luque CJ; Castellanos EM Ann Bot; 2020 Jul; 126(2):277-288. PubMed ID: 32320466 [TBL] [Abstract][Full Text] [Related]
60. Vegetation recovery in an oil-impacted and burned Phragmites australis tidal freshwater marsh. Zengel S; Weaver J; Wilder SL; Dauzat J; Sanfilippo C; Miles MS; Jellison K; Doelling P; Davis A; Fortier BK; Harris J; Panaccione J; Wall S; Nixon Z Sci Total Environ; 2018 Jan; 612():231-237. PubMed ID: 28850842 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]