These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 28675927)

  • 1. Predicted Structures of the Active Sites Responsible for the Improved Reduction of Carbon Dioxide by Gold Nanoparticles.
    Cheng T; Huang Y; Xiao H; Goddard WA
    J Phys Chem Lett; 2017 Jul; 8(14):3317-3320. PubMed ID: 28675927
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monodisperse Au nanoparticles for selective electrocatalytic reduction of CO2 to CO.
    Zhu W; Michalsky R; Metin Ö; Lv H; Guo S; Wright CJ; Sun X; Peterson AA; Sun S
    J Am Chem Soc; 2013 Nov; 135(45):16833-6. PubMed ID: 24156631
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identifying Active Sites for CO
    Chen Y; Huang Y; Cheng T; Goddard WA
    J Am Chem Soc; 2019 Jul; 141(29):11651-11657. PubMed ID: 31287676
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface Ligand Promotion of Carbon Dioxide Reduction through Stabilizing Chemisorbed Reactive Intermediates.
    Wang Z; Wu L; Sun K; Chen T; Jiang Z; Cheng T; Goddard WA
    J Phys Chem Lett; 2018 Jun; 9(11):3057-3061. PubMed ID: 29786440
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrahigh Mass Activity for Carbon Dioxide Reduction Enabled by Gold-Iron Core-Shell Nanoparticles.
    Sun K; Cheng T; Wu L; Hu Y; Zhou J; Maclennan A; Jiang Z; Gao Y; Goddard WA; Wang Z
    J Am Chem Soc; 2017 Nov; 139(44):15608-15611. PubMed ID: 28990777
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancing CO
    Gao D; Zhang Y; Zhou Z; Cai F; Zhao X; Huang W; Li Y; Zhu J; Liu P; Yang F; Wang G; Bao X
    J Am Chem Soc; 2017 Apr; 139(16):5652-5655. PubMed ID: 28391686
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aqueous CO2 reduction at very low overpotential on oxide-derived Au nanoparticles.
    Chen Y; Li CW; Kanan MW
    J Am Chem Soc; 2012 Dec; 134(49):19969-72. PubMed ID: 23171134
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure Sensitivity in the Electrocatalytic Reduction of CO
    Mezzavilla S; Horch S; Stephens IEL; Seger B; Chorkendorff I
    Angew Chem Int Ed Engl; 2019 Mar; 58(12):3774-3778. PubMed ID: 30673156
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improving CO
    Chang K; Jian X; Jeong HM; Kwon Y; Lu Q; Cheng MJ
    J Phys Chem Lett; 2020 Mar; 11(5):1896-1902. PubMed ID: 32069406
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Supported gold catalysis: from small molecule activation to green chemical synthesis.
    Liu X; He L; Liu YM; Cao Y
    Acc Chem Res; 2014 Mar; 47(3):793-804. PubMed ID: 24328524
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Size-dependent electrocatalytic reduction of CO2 over Pd nanoparticles.
    Gao D; Zhou H; Wang J; Miao S; Yang F; Wang G; Wang J; Bao X
    J Am Chem Soc; 2015 Apr; 137(13):4288-91. PubMed ID: 25746233
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Operando Evolution of the Structure and Oxidation State of Size-Controlled Zn Nanoparticles during CO
    Jeon HS; Sinev I; Scholten F; Divins NJ; Zegkinoglou I; Pielsticker L; Cuenya BR
    J Am Chem Soc; 2018 Aug; 140(30):9383-9386. PubMed ID: 30008209
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nature of the Active Sites for CO Reduction on Copper Nanoparticles; Suggestions for Optimizing Performance.
    Cheng T; Xiao H; Goddard WA
    J Am Chem Soc; 2017 Aug; 139(34):11642-11645. PubMed ID: 28810738
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CO2 Reduction to CO in Water: Carbon Nanotube-Gold Nanohybrid as a Selective and Efficient Electrocatalyst.
    Huan TN; Prakash P; Simon P; Rousse G; Xu X; Artero V; Gravel E; Doris E; Fontecave M
    ChemSusChem; 2016 Sep; 9(17):2317-20. PubMed ID: 27492905
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Active and selective conversion of CO2 to CO on ultrathin Au nanowires.
    Zhu W; Zhang YJ; Zhang H; Lv H; Li Q; Michalsky R; Peterson AA; Sun S
    J Am Chem Soc; 2014 Nov; 136(46):16132-5. PubMed ID: 25380393
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational insights into the strain effect on the electrocatalytic reduction of CO
    Liu H; Liu J; Yang B
    Phys Chem Chem Phys; 2020 May; 22(17):9600-9606. PubMed ID: 32322855
    [TBL] [Abstract][Full Text] [Related]  

  • 17. From low to high-index facets of noble metal nanocrystals: a way forward to enhance the performance of electrochemical CO
    Woldu AR
    Nanoscale; 2020 Apr; 12(16):8626-8635. PubMed ID: 32285069
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pyrrolic-nitrogen doped graphene: a metal-free electrocatalyst with high efficiency and selectivity for the reduction of carbon dioxide to formic acid: a computational study.
    Liu Y; Zhao J; Cai Q
    Phys Chem Chem Phys; 2016 Feb; 18(7):5491-8. PubMed ID: 26863176
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reaction Mechanisms for the Electrochemical Reduction of CO
    Cheng T; Xiao H; Goddard WA
    J Am Chem Soc; 2016 Oct; 138(42):13802-13805. PubMed ID: 27726392
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of pore diameter and length on electrochemical CO
    Goyal A; Bondue CJ; Graf M; Koper MTM
    Chem Sci; 2022 Mar; 13(11):3288-3298. PubMed ID: 35414878
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.