These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 28675928)

  • 21. Modeling carbon monoxide dehydrogenase/acetyl-CoA synthase (CODH/ACS): a trinuclear nickel complex employing deprotonated amides and bridging thiolates.
    Hatlevik Ø; Blanksma MC; Mathrubootham V; Arif AM; Hegg EL
    J Biol Inorg Chem; 2004 Mar; 9(2):238-46. PubMed ID: 14735332
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Spectroscopic and computational studies of a Ni(+)-CO model complex: implications for the acetyl-CoA synthase catalytic mechanism.
    Craft JL; Mandimutsira BS; Fujita K; Riordan CG; Brunold TC
    Inorg Chem; 2003 Feb; 42(3):859-67. PubMed ID: 12562200
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Electrochemical, Spectroscopic, and Density Functional Theory Characterization of Redox Activity in Nickel-Substituted Azurin: A Model for Acetyl-CoA Synthase.
    Manesis AC; Shafaat HS
    Inorg Chem; 2015 Aug; 54(16):7959-67. PubMed ID: 26234790
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Methods for analysis of acetyl-CoA synthase applications to bacterial and archaeal systems.
    Grahame DA
    Methods Enzymol; 2011; 494():189-217. PubMed ID: 21402216
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Capture of Ni(II), Cu(I) and Z(II) by thiolate sulfurs of an N2S2Ni complex: a role for a metallothiolate ligand in the acetyl-coenzyme A synthase active site.
    Golden ML; Rampersad MV; Reibenspies JH; Darensbourg MY
    Chem Commun (Camb); 2003 Aug; (15):1824-5. PubMed ID: 12931985
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Chemical issues addressing the construction of the distal Ni[cysteine-glycine-cysteine]2- site of acetyl CoA synthase: why not copper?
    Green KN; Brothers SM; Lee B; Darensbourg MY; Rockcliffe DA
    Inorg Chem; 2009 Apr; 48(7):2780-92. PubMed ID: 19253985
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Stopped-Flow Kinetics of Methyl Group Transfer between the Corrinoid-Iron-Sulfur Protein and Acetyl-Coenzyme A Synthase from Clostridium thermoaceticum.
    Tan XS; Sewell C; Lindahl PA
    J Am Chem Soc; 2002 Jun; 124(22):6277-84. PubMed ID: 12033855
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The two-electron reduced A cluster in acetyl-CoA synthase: Preparation, characteristics and mechanistic implications.
    Gencic S; Duin EC; Grahame DA
    J Inorg Biochem; 2023 Mar; 240():112098. PubMed ID: 36580832
    [TBL] [Abstract][Full Text] [Related]  

  • 29. EPR and infrared spectroscopic evidence that a kinetically competent paramagnetic intermediate is formed when acetyl-coenzyme A synthase reacts with CO.
    George SJ; Seravalli J; Ragsdale SW
    J Am Chem Soc; 2005 Oct; 127(39):13500-1. PubMed ID: 16190705
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The conversion of nickel-bound CO into an acetyl thioester: organometallic chemistry relevant to the acetyl coenzyme A synthase active site.
    Horn B; Limberg C; Herwig C; Mebs S
    Angew Chem Int Ed Engl; 2011 Dec; 50(52):12621-5. PubMed ID: 22065604
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Thiolate-bridged nickel-copper complexes: a binuclear model for the catalytic site of acetyl coenzyme a synthase?
    Krishnan R; Voo JK; Riordan CG; Zahkarov L; Rheingold AL
    J Am Chem Soc; 2003 Apr; 125(15):4422-3. PubMed ID: 12683803
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Methyl transfer from methylcobaloxime to (triphos)Ni(PPh(3)): relevance to the mechanism of acetyl coenzyme A synthase.
    Eckert NA; Dougherty WG; Yap GP; Riordan CG
    J Am Chem Soc; 2007 Aug; 129(30):9286-7. PubMed ID: 17622143
    [No Abstract]   [Full Text] [Related]  

  • 33. Inactivation of acetyl-CoA synthase/carbon monoxide dehydrogenase by copper.
    Bramlett MR; Tan X; Lindahl PA
    J Am Chem Soc; 2003 Aug; 125(31):9316-7. PubMed ID: 12889960
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Synthetic chemistry and chemical precedents for understanding the structure and function of acetyl coenzyme A synthase.
    Riordan CG
    J Biol Inorg Chem; 2004 Jul; 9(5):542-9. PubMed ID: 15221481
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Unraveling the structure and mechanism of acetyl-coenzyme A synthase.
    Hegg EL
    Acc Chem Res; 2004 Oct; 37(10):775-83. PubMed ID: 15491124
    [TBL] [Abstract][Full Text] [Related]  

  • 36. O2 Inhibition of Ni-Containing CO Dehydrogenase Is Partly Reversible.
    Merrouch M; Hadj-Saïd J; Domnik L; Dobbek H; Léger C; Dementin S; Fourmond V
    Chemistry; 2015 Dec; 21(52):18934-8. PubMed ID: 26568460
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A dinuclear nickel complex modeling of the Ni(d)(II)-Ni(p)(I) state of the active site of acetyl CoA synthase.
    Matsumoto T; Ito M; Kotera M; Tatsumi K
    Dalton Trans; 2010 Mar; 39(12):2995-7. PubMed ID: 20221531
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nickel and the carbon cycle.
    Ragsdale SW
    J Inorg Biochem; 2007 Nov; 101(11-12):1657-66. PubMed ID: 17716738
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biochemistry of methyl-coenzyme M reductase: the nickel metalloenzyme that catalyzes the final step in synthesis and the first step in anaerobic oxidation of the greenhouse gas methane.
    Ragsdale SW
    Met Ions Life Sci; 2014; 14():125-45. PubMed ID: 25416393
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Thioester synthesis by a designed nickel enzyme models prebiotic energy conversion.
    Manesis AC; Yerbulekova A; Shearer J; Shafaat HS
    Proc Natl Acad Sci U S A; 2022 Jul; 119(30):e2123022119. PubMed ID: 35858422
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.