BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

323 related articles for article (PubMed ID: 28676011)

  • 1. Resilience Dysregulation in Major Depressive Disorder: Focus on Glutamatergic Imbalance and Microglial Activation.
    Reus GZ; de Moura AB; Silva RH; Resende WR; Quevedo J
    Curr Neuropharmacol; 2018 Mar; 16(3):297-307. PubMed ID: 28676011
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Severe depression is associated with increased microglial quinolinic acid in subregions of the anterior cingulate gyrus: evidence for an immune-modulated glutamatergic neurotransmission?
    Steiner J; Walter M; Gos T; Guillemin GJ; Bernstein HG; Sarnyai Z; Mawrin C; Brisch R; Bielau H; Meyer zu Schwabedissen L; Bogerts B; Myint AM
    J Neuroinflammation; 2011 Aug; 8():94. PubMed ID: 21831269
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neuroprogression and Immune Activation in Major Depressive Disorder.
    Meyer JH
    Mod Trends Pharmacopsychiatry; 2017; 31():27-36. PubMed ID: 28738332
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Emerging role of glutamate in the pathophysiology of major depressive disorder.
    Hashimoto K
    Brain Res Rev; 2009 Oct; 61(2):105-23. PubMed ID: 19481572
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chronic psychosocial stress triggers microglial-/macrophage-induced inflammatory responses leading to neuronal dysfunction and depressive-related behavior.
    Kokkosis AG; Madeira MM; Hage Z; Valais K; Koliatsis D; Resutov E; Tsirka SE
    Glia; 2024 Jan; 72(1):111-132. PubMed ID: 37675659
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synaptic P2X7 receptor regenerative-loop hypothesis for depression.
    Bennett MR
    Aust N Z J Psychiatry; 2007 Jul; 41(7):563-71. PubMed ID: 17558618
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic microglial alterations underlie stress-induced depressive-like behavior and suppressed neurogenesis.
    Kreisel T; Frank MG; Licht T; Reshef R; Ben-Menachem-Zidon O; Baratta MV; Maier SF; Yirmiya R
    Mol Psychiatry; 2014 Jun; 19(6):699-709. PubMed ID: 24342992
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glutamate and its receptors in the pathophysiology and treatment of major depressive disorder.
    Niciu MJ; Ionescu DF; Richards EM; Zarate CA
    J Neural Transm (Vienna); 2014 Aug; 121(8):907-24. PubMed ID: 24318540
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of inflammation and microglial activation in the pathophysiology of psychiatric disorders.
    Réus GZ; Fries GR; Stertz L; Badawy M; Passos IC; Barichello T; Kapczinski F; Quevedo J
    Neuroscience; 2015 Aug; 300():141-54. PubMed ID: 25981208
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Early life stress, resilience and emotional dysregulation in major depressive disorder with comorbid borderline personality disorder.
    Kim MK; Kim JS; Park HI; Choi SW; Oh WJ; Seok JH
    J Affect Disord; 2018 Aug; 236():113-119. PubMed ID: 29730510
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The immune-mediated alteration of serotonin and glutamate: towards an integrated view of depression.
    Müller N; Schwarz MJ
    Mol Psychiatry; 2007 Nov; 12(11):988-1000. PubMed ID: 17457312
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetics of resilience: Implications from genome-wide association studies and candidate genes of the stress response system in posttraumatic stress disorder and depression.
    Maul S; Giegling I; Fabbri C; Corponi F; Serretti A; Rujescu D
    Am J Med Genet B Neuropsychiatr Genet; 2020 Mar; 183(2):77-94. PubMed ID: 31583809
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microglial activation enhances associative taste memory through purinergic modulation of glutamatergic neurotransmission.
    Delpech JC; Saucisse N; Parkes SL; Lacabanne C; Aubert A; Casenave F; Coutureau E; Sans N; Layé S; Ferreira G; Nadjar A
    J Neurosci; 2015 Feb; 35(7):3022-33. PubMed ID: 25698740
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional neuroimaging biomarkers of resilience in major depressive disorder.
    Fischer AS; Hagan KE; Gotlib IH
    Curr Opin Psychiatry; 2021 Jan; 34(1):22-28. PubMed ID: 33027183
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neurobiological Mechanisms of Stress Resilience and Implications for the Aged Population.
    Faye C; Mcgowan JC; Denny CA; David DJ
    Curr Neuropharmacol; 2018 Mar; 16(3):234-270. PubMed ID: 28820053
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Astrocyte and microglial control of glutamatergic signalling: a primer on understanding the disruptive role of chronic stress.
    Mayhew J; Beart PM; Walker FR
    J Neuroendocrinol; 2015 Jun; 27(6):498-506. PubMed ID: 25737228
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Individual stress vulnerability is predicted by short-term memory and AMPA receptor subunit ratio in the hippocampus.
    Schmidt MV; Trümbach D; Weber P; Wagner K; Scharf SH; Liebl C; Datson N; Namendorf C; Gerlach T; Kühne C; Uhr M; Deussing JM; Wurst W; Binder EB; Holsboer F; Müller MB
    J Neurosci; 2010 Dec; 30(50):16949-58. PubMed ID: 21159965
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of glutamate on the action of antidepressants.
    Hashimoto K
    Prog Neuropsychopharmacol Biol Psychiatry; 2011 Aug; 35(7):1558-68. PubMed ID: 20600468
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A brief history of the development of antidepressant drugs: from monoamines to glutamate.
    Hillhouse TM; Porter JH
    Exp Clin Psychopharmacol; 2015 Feb; 23(1):1-21. PubMed ID: 25643025
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gene expression analysis of novel genes in the prefrontal cortex of major depressive disorder subjects.
    Goswami DB; Jernigan CS; Chandran A; Iyo AH; May WL; Austin MC; Stockmeier CA; Karolewicz B
    Prog Neuropsychopharmacol Biol Psychiatry; 2013 Jun; 43():126-33. PubMed ID: 23261523
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.