These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 28676056)

  • 1. Investigation of implantable signal transmission characteristics based on visible data of the human leg.
    Gao YM; Ye YT; Lin S; Vasić ŽL; Vai MI; Du M; Cifrek M; Pun SH
    Biomed Eng Online; 2017 Jul; 16(1):88. PubMed ID: 28676056
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measurement and analysis of channel attenuation characteristics for an implantable galvanic coupling human-body communication.
    Zhang S; Pun SH; Mak PU; Qin YP; Liu YH; Vai MI
    Technol Health Care; 2016 Nov; 24(6):821-826. PubMed ID: 27341451
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new technique for transmission of signals from implantable transducers.
    Lindsey DP; McKee EL; Hull ML; Howell SM
    IEEE Trans Biomed Eng; 1998 May; 45(5):614-9. PubMed ID: 9581060
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrical exposure analysis of galvanic-coupled intra-body communication based on the empirical arm models.
    Gao YM; Zhang HF; Lin S; Jiang RX; Chen ZY; Lučev Vasić Ž; Vai MI; Du M; Cifrek M; Pun SH
    Biomed Eng Online; 2018 Jun; 17(1):71. PubMed ID: 29866126
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparable Investigation of Characteristics for Implant Intra-Body Communication Based on Galvanic and Capacitive Coupling.
    Li M; Song Y; Hou Y; Li N; Jiang Y; Sulaman M; Hao Q
    IEEE Trans Biomed Circuits Syst; 2019 Dec; 13(6):1747-1758. PubMed ID: 31514153
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Novel Field-Circuit FEM Modeling and Channel Gain Estimation for Galvanic Coupling Real IBC Measurements.
    Gao YM; Wu ZM; Pun SH; Mak PU; Vai MI; Du M
    Sensors (Basel); 2016 Apr; 16(4):. PubMed ID: 27049386
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electric-field intrabody communication channel modeling with finite-element method.
    Xu R; Zhu H; Yuan J
    IEEE Trans Biomed Eng; 2011 Mar; 58(3):705-12. PubMed ID: 21095853
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A touch probe method of operating an implantable RFID tag for orthopedic implant identification.
    Liu X; Berger JL; Ogirala A; Mickle MH
    IEEE Trans Biomed Circuits Syst; 2013 Jun; 7(3):236-42. PubMed ID: 23853323
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Numerical evaluation of implantable hearing devices using a finite element model of human ear considering viscoelastic properties.
    Zhang J; Tian J; Ta N; Huang X; Rao Z
    Proc Inst Mech Eng H; 2016 Aug; 230(8):784-94. PubMed ID: 27276992
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A finite-element simulation of galvanic coupling intra-body communication based on the whole human body.
    Song Y; Zhang K; Hao Q; Hu L; Wang J; Shang F
    Sensors (Basel); 2012 Oct; 12(10):13567-82. PubMed ID: 23202010
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Finite element modeling of subcutaneous implantable defibrillator electrodes in an adult torso.
    Jolley M; Stinstra J; Tate J; Pieper S; Macleod R; Chu L; Wang P; Triedman JK
    Heart Rhythm; 2010 May; 7(5):692-8. PubMed ID: 20230927
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Capacitive-coupling-based information transmission system for implantable devices: investigation of transmission mechanism.
    Shiba K; Enoki N
    IEEE Trans Biomed Circuits Syst; 2013 Oct; 7(5):674-81. PubMed ID: 24232628
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the design of a DEA-based device to pot entially assist lower leg disorders: an analytical and FEM investigation accounting for nonlinearities of the leg and device deformations.
    Pourazadi S; Ahmadi S; Menon C
    Biomed Eng Online; 2015 Nov; 14():103. PubMed ID: 26541150
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Galvanic coupling transmission in intrabody communication: a finite element approach.
    Amparo Callejón M; Reina-Tosina J; Naranjo-Hernández D; Roa LM
    IEEE Trans Biomed Eng; 2014 Mar; 61(3):775-83. PubMed ID: 24216629
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An Investigation on Ground Electrodes of Capacitive Coupling Human Body Communication.
    Mao J; Yang H; Zhao B
    IEEE Trans Biomed Circuits Syst; 2017 Aug; 11(4):910-919. PubMed ID: 28541910
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Implementation of a multisource model for gold nanoparticle-mediated plasmonic heating with near-infrared laser by the finite element method.
    Reynoso FJ; Lee CD; Cheong SK; Cho SH
    Med Phys; 2013 Jul; 40(7):073301. PubMed ID: 23822455
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measurement Issues in Galvanic Intrabody Communication: Influence of Experimental Setup.
    Callejon MA; Reina-Tosina J; Naranjo-Hernandez D; Roa LM
    IEEE Trans Biomed Eng; 2015 Nov; 62(11):2724-32. PubMed ID: 26080377
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electromagnetic Analysis, Characterization and Discussion of Inductive Transmission Parameters for Titanium Based Housing Materials in Active Medical Implantable Devices.
    Gruenwald W; Bhattacharrya M; Jansen D; Reindl L
    Materials (Basel); 2018 Oct; 11(11):. PubMed ID: 30366401
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Path loss modeling and verification of implantable human-body communication based on a point source field.
    Yan DD; Zhang T; Zhang S
    Technol Health Care; 2020; 28(3):283-292. PubMed ID: 31658071
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In Vitro Testing of an Implantable Wireless Telemetry System for Long-Term Electromyography Recordings in Large Animals.
    Kneisz L; Unger E; Lanmüller H; Mayr W
    Artif Organs; 2015 Oct; 39(10):897-902. PubMed ID: 26471141
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.