BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 28676375)

  • 1. The family of berberine bridge enzyme-like enzymes: A treasure-trove of oxidative reactions.
    Daniel B; Konrad B; Toplak M; Lahham M; Messenlehner J; Winkler A; Macheroux P
    Arch Biochem Biophys; 2017 Oct; 632():88-103. PubMed ID: 28676375
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Covalent attachment of flavin adenine dinucleotide (FAD) and flavin mononucleotide (FMN) to enzymes: the current state of affairs.
    Mewies M; McIntire WS; Scrutton NS
    Protein Sci; 1998 Jan; 7(1):7-20. PubMed ID: 9514256
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural and mechanistic studies reveal the functional role of bicovalent flavinylation in berberine bridge enzyme.
    Winkler A; Motz K; Riedl S; Puhl M; Macheroux P; Gruber K
    J Biol Chem; 2009 Jul; 284(30):19993-20001. PubMed ID: 19457868
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biochemical evidence that berberine bridge enzyme belongs to a novel family of flavoproteins containing a bi-covalently attached FAD cofactor.
    Winkler A; Hartner F; Kutchan TM; Glieder A; Macheroux P
    J Biol Chem; 2006 Jul; 281(30):21276-21285. PubMed ID: 16728404
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The scope of flavin-dependent reactions and processes in the model plant Arabidopsis thaliana.
    Eggers R; Jammer A; Jha S; Kerschbaumer B; Lahham M; Strandback E; Toplak M; Wallner S; Winkler A; Macheroux P
    Phytochemistry; 2021 Sep; 189():112822. PubMed ID: 34118767
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The flavoprotein component of the Escherichia coli sulfite reductase: expression, purification, and spectral and catalytic properties of a monomeric form containing both the flavin adenine dinucleotide and the flavin mononucleotide cofactors.
    Zeghouf M; Fontecave M; Macherel D; Covès J
    Biochemistry; 1998 Apr; 37(17):6114-23. PubMed ID: 9558350
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The single berberine bridge enzyme homolog of Physcomitrella patens is a cellobiose oxidase.
    Toplak M; Wiedemann G; Ulićević J; Daniel B; Hoernstein SNW; Kothe J; Niederhauser J; Reski R; Winkler A; Macheroux P
    FEBS J; 2018 May; 285(10):1923-1943. PubMed ID: 29633551
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flavin adenine dinucleotide content of quinone reductase 2: analysis and optimization for structure-function studies.
    Leung KK; Litchfield DW; Shilton BH
    Anal Biochem; 2012 Jan; 420(1):84-9. PubMed ID: 21971443
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Understanding the FMN cofactor chemistry within the Anabaena Flavodoxin environment.
    Lans I; Frago S; Medina M
    Biochim Biophys Acta; 2012 Dec; 1817(12):2118-27. PubMed ID: 22982476
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Potentiometric and further kinetic characterization of the flavin-binding domain of Saccharomyces cerevisiae flavocytochrome b2. Inhibition by anions binding in the active site.
    Cénas N; Lê KH; Terrier M; Lederer F
    Biochemistry; 2007 Apr; 46(15):4661-70. PubMed ID: 17373777
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A concerted mechanism for berberine bridge enzyme.
    Winkler A; Lyskowski A; Riedl S; Puhl M; Kutchan TM; Macheroux P; Gruber K
    Nat Chem Biol; 2008 Dec; 4(12):739-41. PubMed ID: 18953357
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enzyme-Mediated Conversion of Flavin Adenine Dinucleotide (FAD) to 8-Formyl FAD in Formate Oxidase Results in a Modified Cofactor with Enhanced Catalytic Properties.
    Robbins JM; Souffrant MG; Hamelberg D; Gadda G; Bommarius AS
    Biochemistry; 2017 Jul; 56(29):3800-3807. PubMed ID: 28640638
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calculating chemically accurate redox potentials for engineered flavoproteins from classical molecular dynamics free energy simulations.
    Sattelle BM; Sutcliffe MJ
    J Phys Chem A; 2008 Dec; 112(50):13053-7. PubMed ID: 18828581
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flavogenomics--a genomic and structural view of flavin-dependent proteins.
    Macheroux P; Kappes B; Ealick SE
    FEBS J; 2011 Aug; 278(15):2625-34. PubMed ID: 21635694
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis and application of isotopically labeled flavin nucleotides.
    Mishanina TV; Kohen A
    J Labelled Comp Radiopharm; 2015 Jul; 58(9):370-5. PubMed ID: 26149960
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure of the flavocoenzyme of two homologous amine oxidases: monomeric sarcosine oxidase and N-methyltryptophan oxidase.
    Wagner MA; Khanna P; Jorns MS
    Biochemistry; 1999 Apr; 38(17):5588-95. PubMed ID: 10220347
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Redox properties of the isolated flavin mononucleotide- and flavin adenine dinucleotide-binding domains of neuronal nitric oxide synthase.
    Garnaud PE; Koetsier M; Ost TW; Daff S
    Biochemistry; 2004 Aug; 43(34):11035-44. PubMed ID: 15323562
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Model systems for flavoenzyme activity: interplay of hydrogen bonding and aromatic stacking in cofactor redox modulation.
    Gray M; Goodman AJ; Carroll JB; Bardon K; Markey M; Cooke G; Rotello VM
    Org Lett; 2004 Feb; 6(3):385-8. PubMed ID: 14748599
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Chemical and functional properties of flavin coenzymes].
    Setoyama C; Miura R
    Nihon Rinsho; 1999 Oct; 57(10):2193-8. PubMed ID: 10540861
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic association of flavin cofactors to regulate flavoprotein function.
    Schnerwitzki D; Vabulas RM
    IUBMB Life; 2022 Jul; 74(7):645-654. PubMed ID: 35015339
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.