BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 28676489)

  • 21. Vascular smooth muscle cells express the alpha(1A) subunit of a P-/Q-type voltage-dependent Ca(2+)Channel, and It is functionally important in renal afferent arterioles.
    Hansen PB; Jensen BL; Andreasen D; Friis UG; Skøtt O
    Circ Res; 2000 Nov; 87(10):896-902. PubMed ID: 11073885
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Intercellular calcium signaling and nitric oxide feedback during constriction of rabbit renal afferent arterioles.
    Uhrenholt TR; Schjerning J; Vanhoutte PM; Jensen BL; Skøtt O
    Am J Physiol Renal Physiol; 2007 Apr; 292(4):F1124-31. PubMed ID: 17148782
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Unitary TRPV3 channel Ca2+ influx events elicit endothelium-dependent dilation of cerebral parenchymal arterioles.
    Pires PW; Sullivan MN; Pritchard HA; Robinson JJ; Earley S
    Am J Physiol Heart Circ Physiol; 2015 Dec; 309(12):H2031-41. PubMed ID: 26453324
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Endothelium-dependent cerebral artery dilation mediated by transient receptor potential and Ca2+-activated K+ channels.
    Earley S
    J Cardiovasc Pharmacol; 2011 Feb; 57(2):148-53. PubMed ID: 20729757
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Endothelial control of vasodilation: integration of myoendothelial microdomain signalling and modulation by epoxyeicosatrienoic acids.
    Ellinsworth DC; Earley S; Murphy TV; Sandow SL
    Pflugers Arch; 2014 Mar; 466(3):389-405. PubMed ID: 23748495
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Endothelial K(ca) channels mediate flow-dependent dilation of arterioles of skeletal muscle and mesentery.
    Sun D; Huang A; Koller A; Kaley G
    Microvasc Res; 2001 Mar; 61(2):179-86. PubMed ID: 11254397
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The role of L- and T-type calcium channels in local and remote calcium responses in rat mesenteric terminal arterioles.
    Braunstein TH; Inoue R; Cribbs L; Oike M; Ito Y; Holstein-Rathlou NH; Jensen LJ
    J Vasc Res; 2009; 46(2):138-51. PubMed ID: 18765948
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mediation of EDHF-induced reduction of smooth muscle [Ca(2+)](i) and arteriolar dilation by K(+) channels, 5,6-EET, and gap junctions.
    Ungvari Z; Koller A
    Microcirculation; 2001 Aug; 8(4):265-74. PubMed ID: 11528534
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Low intravascular pressure activates endothelial cell TRPV4 channels, local Ca2+ events, and IKCa channels, reducing arteriolar tone.
    Bagher P; Beleznai T; Kansui Y; Mitchell R; Garland CJ; Dora KA
    Proc Natl Acad Sci U S A; 2012 Oct; 109(44):18174-9. PubMed ID: 23071308
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Role of calcium-activated potassium channels with small conductance in bradykinin-induced vasodilation of porcine retinal arterioles.
    Dalsgaard T; Kroigaard C; Bek T; Simonsen U
    Invest Ophthalmol Vis Sci; 2009 Aug; 50(8):3819-25. PubMed ID: 19255162
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fundamental increase in pressure-dependent constriction of brain parenchymal arterioles from subarachnoid hemorrhage model rats due to membrane depolarization.
    Nystoriak MA; O'Connor KP; Sonkusare SK; Brayden JE; Nelson MT; Wellman GC
    Am J Physiol Heart Circ Physiol; 2011 Mar; 300(3):H803-12. PubMed ID: 21148767
    [TBL] [Abstract][Full Text] [Related]  

  • 32. H
    Patel S; Fedinec AL; Liu J; Weiss MA; Pourcyrous M; Harsono M; Parfenova H; Leffler CW
    Am J Physiol Heart Circ Physiol; 2018 Dec; 315(6):H1759-H1764. PubMed ID: 30265150
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Integrated Ca(2+) signaling between smooth muscle and endothelium of resistance vessels.
    Yashiro Y; Duling BR
    Circ Res; 2000 Nov; 87(11):1048-54. PubMed ID: 11090551
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Endothelial Ion Channels and Cell-Cell Communication in the Microcirculation.
    Jackson WF
    Front Physiol; 2022; 13():805149. PubMed ID: 35211031
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Endothelial cell calcium and vascular control.
    Falcone JC
    Med Sci Sports Exerc; 1995 Aug; 27(8):1165-9. PubMed ID: 7476061
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Endothelium-Dependent Hyperpolarization: The Evolution of Myoendothelial Microdomains.
    Garland CJ; Dora KA
    J Cardiovasc Pharmacol; 2021 Dec; 78(Suppl 6):S3-S12. PubMed ID: 34840265
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Obesity up-regulates intermediate conductance calcium-activated potassium channels and myoendothelial gap junctions to maintain endothelial vasodilator function.
    Chadha PS; Haddock RE; Howitt L; Morris MJ; Murphy TV; Grayson TH; Sandow SL
    J Pharmacol Exp Ther; 2010 Nov; 335(2):284-93. PubMed ID: 20671071
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Significance of K(ATP) channels, L-type Ca²⁺ channels and CYP450-4A enzymes in oxygen sensing in mouse cremaster muscle arterioles in vivo.
    Ngo AT; Riemann M; Holstein-Rathlou NH; Torp-Pedersen C; Jensen LJ
    BMC Physiol; 2013 May; 13():8. PubMed ID: 23663730
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ion channels and the regulation of myogenic tone in peripheral arterioles.
    Jackson WF
    Curr Top Membr; 2020; 85():19-58. PubMed ID: 32402640
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Impaired endothelium-derived hyperpolarizing factor-mediated dilations and increased blood pressure in mice deficient of the intermediate-conductance Ca2+-activated K+ channel.
    Si H; Heyken WT; Wölfle SE; Tysiac M; Schubert R; Grgic I; Vilianovich L; Giebing G; Maier T; Gross V; Bader M; de Wit C; Hoyer J; Köhler R
    Circ Res; 2006 Sep; 99(5):537-44. PubMed ID: 16873714
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.