BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 28676499)

  • 1. Kinetic and structural analyses reveal residues in phosphoinositide 3-kinase α that are critical for catalysis and substrate recognition.
    Maheshwari S; Miller MS; O'Meally R; Cole RN; Amzel LM; Gabelli SB
    J Biol Chem; 2017 Aug; 292(33):13541-13550. PubMed ID: 28676499
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Activation loop sequences confer substrate specificity to phosphoinositide 3-kinase alpha (PI3Kalpha ). Functions of lipid kinase-deficient PI3Kalpha in signaling.
    Pirola L; Zvelebil MJ; Bulgarelli-Leva G; Van Obberghen E; Waterfield MD; Wymann MP
    J Biol Chem; 2001 Jun; 276(24):21544-54. PubMed ID: 11278889
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Autophosphorylation of serine 608 in the p85 regulatory subunit of wild type or cancer-associated mutants of phosphoinositide 3-kinase does not affect its lipid kinase activity.
    Layton MJ; Saad M; Church NL; Pearson RB; Mitchell CA; Phillips WA
    BMC Biochem; 2012 Dec; 13():30. PubMed ID: 23270540
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular mechanism of activation of class IA phosphoinositide 3-kinases (PI3Ks) by membrane-localized HRas.
    Siempelkamp BD; Rathinaswamy MK; Jenkins ML; Burke JE
    J Biol Chem; 2017 Jul; 292(29):12256-12266. PubMed ID: 28515318
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Allosteric Activation of PI3Kα Results in Dynamic Access to Catalytically Competent Conformations.
    Chakrabarti M; Gabelli SB; Amzel LM
    Structure; 2020 Apr; 28(4):465-474.e5. PubMed ID: 32049032
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mass spectrometry and site-directed mutagenesis identify several autophosphorylated residues required for the activity of PrkC, a Ser/Thr kinase from Bacillus subtilis.
    Madec E; Stensballe A; Kjellström S; Cladière L; Obuchowski M; Jensen ON; Séror SJ
    J Mol Biol; 2003 Jul; 330(3):459-72. PubMed ID: 12842463
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lipid kinase and protein kinase activities of G-protein-coupled phosphoinositide 3-kinase gamma: structure-activity analysis and interactions with wortmannin.
    Stoyanova S; Bulgarelli-Leva G; Kirsch C; Hanck T; Klinger R; Wetzker R; Wymann MP
    Biochem J; 1997 Jun; 324 ( Pt 2)(Pt 2):489-95. PubMed ID: 9182708
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wortmannin inactivates phosphoinositide 3-kinase by covalent modification of Lys-802, a residue involved in the phosphate transfer reaction.
    Wymann MP; Bulgarelli-Leva G; Zvelebil MJ; Pirola L; Vanhaesebroeck B; Waterfield MD; Panayotou G
    Mol Cell Biol; 1996 Apr; 16(4):1722-33. PubMed ID: 8657148
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Catalytic independent functions of a protein kinase as revealed by a kinase-dead mutant: study of the Lys72His mutant of cAMP-dependent kinase.
    Iyer GH; Garrod S; Woods VL; Taylor SS
    J Mol Biol; 2005 Sep; 351(5):1110-22. PubMed ID: 16054648
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biophysical and Structural Characterization of Novel RAS-Binding Domains (RBDs) of PI3Kα and PI3Kγ.
    Martinez NG; Thieker DF; Carey LM; Rasquinha JA; Kistler SK; Kuhlman BA; Campbell SL
    J Mol Biol; 2021 Apr; 433(8):166838. PubMed ID: 33539876
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Insight into the mechanism of allosteric activation of PI3Kα by oncoprotein K-Ras4B.
    Li X; Dai J; Ni D; He X; Zhang H; Zhang J; Fu Q; Liu Y; Lu S
    Int J Biol Macromol; 2020 Feb; 144():643-655. PubMed ID: 31816384
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural Features that Distinguish Inactive and Active PI3K Lipid Kinases.
    Zhang M; Jang H; Nussinov R
    J Mol Biol; 2020 Nov; 432(22):5849-5859. PubMed ID: 32918948
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Tribbles 2 (TRB2) pseudokinase binds to ATP and autophosphorylates in a metal-independent manner.
    Bailey FP; Byrne DP; Oruganty K; Eyers CE; Novotny CJ; Shokat KM; Kannan N; Eyers PA
    Biochem J; 2015 Apr; 467(1):47-62. PubMed ID: 25583260
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Substrate-assisted movement of the catalytic Lys 215 during domain closure: site-directed mutagenesis studies of human 3-phosphoglycerate kinase.
    Flachner B; Varga A; Szabó J; Barna L; Hajdú I; Gyimesi G; Závodszky P; Vas M
    Biochemistry; 2005 Dec; 44(51):16853-65. PubMed ID: 16363799
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mutation of recombinant catalytic subunit alpha of the protein kinase CK2 that affects catalytic efficiency and specificity.
    Chaillot D; Declerck N; Niefind K; Schomburg D; Chardot T; Meunier JC
    Protein Eng; 2000 Apr; 13(4):291-8. PubMed ID: 10810161
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploring a non-ATP pocket for potential allosteric modulation of PI3Kα.
    Gkeka P; Papafotika A; Christoforidis S; Cournia Z
    J Phys Chem B; 2015 Jan; 119(3):1002-16. PubMed ID: 25299356
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural insights into phosphoinositide 3-kinase catalysis and signalling.
    Walker EH; Perisic O; Ried C; Stephens L; Williams RL
    Nature; 1999 Nov; 402(6759):313-20. PubMed ID: 10580505
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural, biochemical, and biophysical characterization of idelalisib binding to phosphoinositide 3-kinase δ.
    Somoza JR; Koditek D; Villaseñor AG; Novikov N; Wong MH; Liclican A; Xing W; Lagpacan L; Wang R; Schultz BE; Papalia GA; Samuel D; Lad L; McGrath ME
    J Biol Chem; 2015 Mar; 290(13):8439-46. PubMed ID: 25631052
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering of an isolated p110α subunit of PI3Kα permits crystallization and provides a platform for structure-based drug design.
    Chen P; Deng YL; Bergqvist S; Falk MD; Liu W; Timofeevski S; Brooun A
    Protein Sci; 2014 Oct; 23(10):1332-40. PubMed ID: 25043846
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rationally Designed PI3Kα Mutants to Mimic ATR and Their Use to Understand Binding Specificity of ATR Inhibitors.
    Lu Y; Knapp M; Crawford K; Warne R; Elling R; Yan K; Doyle M; Pardee G; Zhang L; Ma S; Mamo M; Ornelas E; Pan Y; Bussiere D; Jansen J; Zaror I; Lai A; Barsanti P; Sim J
    J Mol Biol; 2017 Jun; 429(11):1684-1704. PubMed ID: 28433539
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.