These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 28676654)

  • 1. Identifying Human SIRT1 Substrates by Integrating Heterogeneous Information from Various Sources.
    Zhai Z; Tang M; Yang Y; Lu M; Zhu WG; Li T
    Sci Rep; 2017 Jul; 7(1):4614. PubMed ID: 28676654
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Systematic identification of Class I HDAC substrates.
    Li T; Song B; Wu Z; Lu M; Zhu WG
    Brief Bioinform; 2014 Nov; 15(6):963-72. PubMed ID: 23975722
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction and functional analysis of prokaryote lysine acetylation site by incorporating six types of features into Chou's general PseAAC.
    Chen G; Cao M; Yu J; Guo X; Shi S
    J Theor Biol; 2019 Jan; 461():92-101. PubMed ID: 30365945
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis and prediction of human acetylation using a cascade classifier based on support vector machine.
    Ning Q; Yu M; Ji J; Ma Z; Zhao X
    BMC Bioinformatics; 2019 Jun; 20(1):346. PubMed ID: 31208321
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of S-nitrosylation sites by integrating support vector machines and random forest.
    Hasan MM; Manavalan B; Khatun MS; Kurata H
    Mol Omics; 2019 Dec; 15(6):451-458. PubMed ID: 31710075
    [TBL] [Abstract][Full Text] [Related]  

  • 6. AROS has a context-dependent effect on SIRT1.
    Kokkola T; Suuronen T; Molnár F; Määttä J; Salminen A; Jarho EM; Lahtela-Kakkonen M
    FEBS Lett; 2014 May; 588(9):1523-8. PubMed ID: 24681097
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computing Prediction and Functional Analysis of Prokaryotic Propionylation.
    Wang LN; Shi SP; Wen PP; Zhou ZY; Qiu JD
    J Chem Inf Model; 2017 Nov; 57(11):2896-2904. PubMed ID: 29059524
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of lysine propionylation sites using biased SVM and incorporating four different sequence features into Chou's PseAAC.
    Ju Z; He JJ
    J Mol Graph Model; 2017 Sep; 76():356-363. PubMed ID: 28763688
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational Identification of Protein Pupylation Sites by Using Profile-Based Composition of k-Spaced Amino Acid Pairs.
    Hasan MM; Zhou Y; Lu X; Li J; Song J; Zhang Z
    PLoS One; 2015; 10(6):e0129635. PubMed ID: 26080082
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative acetylome analysis reveals the roles of SIRT1 in regulating diverse substrates and cellular pathways.
    Chen Y; Zhao W; Yang JS; Cheng Z; Luo H; Lu Z; Tan M; Gu W; Zhao Y
    Mol Cell Proteomics; 2012 Oct; 11(10):1048-62. PubMed ID: 22826441
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identifying human kinase-specific protein phosphorylation sites by integrating heterogeneous information from various sources.
    Li T; Du P; Xu N
    PLoS One; 2010 Nov; 5(11):e15411. PubMed ID: 21085571
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization and identification of protein O-GlcNAcylation sites with substrate specificity.
    Wu HY; Lu CT; Kao HJ; Chen YJ; Chen YJ; Lee TY
    BMC Bioinformatics; 2014; 15 Suppl 16(Suppl 16):S1. PubMed ID: 25521204
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dual role of Zn2+ in maintaining structural integrity and suppressing deacetylase activity of SIRT1.
    Chen L; Feng Y; Zhou Y; Zhu W; Shen X; Chen K; Jiang H; Liu D
    J Inorg Biochem; 2010 Feb; 104(2):180-5. PubMed ID: 19923004
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Position-specific analysis and prediction for protein lysine acetylation based on multiple features.
    Suo SB; Qiu JD; Shi SP; Sun XY; Huang SY; Chen X; Liang RP
    PLoS One; 2012; 7(11):e49108. PubMed ID: 23173045
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lysine acetylation sites prediction using an ensemble of support vector machine classifiers.
    Xu Y; Wang XB; Ding J; Wu LY; Deng NY
    J Theor Biol; 2010 May; 264(1):130-5. PubMed ID: 20085770
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sirt1 interaction with active Smad2 modulates transforming growth factor-β regulated transcription.
    García-Vizcaíno EM; Liarte S; Alonso-Romero JL; Nicolás FJ
    Cell Commun Signal; 2017 Nov; 15(1):50. PubMed ID: 29187201
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of Protein Lysine Acylation by Integrating Primary Sequence Information with Multiple Functional Features.
    Du Y; Zhai Z; Li Y; Lu M; Cai T; Zhou B; Huang L; Wei T; Li T
    J Proteome Res; 2016 Dec; 15(12):4234-4244. PubMed ID: 27774790
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An intelligent system for identifying acetylated lysine on histones and nonhistone proteins.
    Lu CT; Lee TY; Chen YJ; Chen YJ
    Biomed Res Int; 2014; 2014():528650. PubMed ID: 25147802
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural basis for allosteric, substrate-dependent stimulation of SIRT1 activity by resveratrol.
    Cao D; Wang M; Qiu X; Liu D; Jiang H; Yang N; Xu RM
    Genes Dev; 2015 Jun; 29(12):1316-25. PubMed ID: 26109052
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Resveratrol serves as a protein-substrate interaction stabilizer in human SIRT1 activation.
    Hou X; Rooklin D; Fang H; Zhang Y
    Sci Rep; 2016 Nov; 6():38186. PubMed ID: 27901083
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.