These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 28676654)

  • 21. QSAR Differential Model for Prediction of SIRT1 Modulation using Monte Carlo Method.
    Kumar A; Chauhan S
    Drug Res (Stuttg); 2017 Mar; 67(3):156-162. PubMed ID: 27992935
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Identification of RNA-binding sites in proteins by integrating various sequence information.
    Wang CC; Fang Y; Xiao J; Li M
    Amino Acids; 2011 Jan; 40(1):239-48. PubMed ID: 20549269
    [TBL] [Abstract][Full Text] [Related]  

  • 23. PhosphoSVM: prediction of phosphorylation sites by integrating various protein sequence attributes with a support vector machine.
    Dou Y; Yao B; Zhang C
    Amino Acids; 2014 Jun; 46(6):1459-69. PubMed ID: 24623121
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dissecting the roles of the N- and C-flanking residues of acetyllysine substrates for SIRT1 activity.
    Meledin R; Brik A; Aharoni A
    Chembiochem; 2013 Mar; 14(5):577-81. PubMed ID: 23426869
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Acetylome study in mouse adipocytes identifies targets of SIRT1 deacetylation in chromatin organization and RNA processing.
    Kim SY; Sim CK; Tang H; Han W; Zhang K; Xu F
    Arch Biochem Biophys; 2016 May; 598():1-10. PubMed ID: 27021582
    [TBL] [Abstract][Full Text] [Related]  

  • 26. N-Ace: using solvent accessibility and physicochemical properties to identify protein N-acetylation sites.
    Lee TY; Hsu JB; Lin FM; Chang WC; Hsu PC; Huang HD
    J Comput Chem; 2010 Nov; 31(15):2759-71. PubMed ID: 20839302
    [TBL] [Abstract][Full Text] [Related]  

  • 27. GSHSite: exploiting an iteratively statistical method to identify s-glutathionylation sites with substrate specificity.
    Chen YJ; Lu CT; Huang KY; Wu HY; Chen YJ; Lee TY
    PLoS One; 2015; 10(4):e0118752. PubMed ID: 25849935
    [TBL] [Abstract][Full Text] [Related]  

  • 28. predCar-site: Carbonylation sites prediction in proteins using support vector machine with resolving data imbalanced issue.
    Hasan MA; Li J; Ahmad S; Molla MK
    Anal Biochem; 2017 May; 525():107-113. PubMed ID: 28286168
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Human SIRT1 Multispecificity Is Modulated by Active-Site Vicinity Substitutions during Natural Evolution.
    Hendler A; Akiva E; Sandhu M; Goldberg D; Arbely E; Jackson CJ; Aharoni A
    Mol Biol Evol; 2021 Jan; 38(2):545-556. PubMed ID: 32956445
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Predicting protein-binding RNA nucleotides with consideration of binding partners.
    Tuvshinjargal N; Lee W; Park B; Han K
    Comput Methods Programs Biomed; 2015 Jun; 120(1):3-15. PubMed ID: 25907142
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The prediction of palmitoylation site locations using a multiple feature extraction method.
    Shi SP; Sun XY; Qiu JD; Suo SB; Chen X; Huang SY; Liang RP
    J Mol Graph Model; 2013 Mar; 40():125-30. PubMed ID: 23419766
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biochemical insight into pseudouridine synthase 7 (PUS7) as a novel interactor of sirtuin, SIRT1.
    Dalal S; Deshmukh P; Unni S; Padavattan S; Padmanabhan B
    Biochem Biophys Res Commun; 2019 Oct; 518(3):598-604. PubMed ID: 31451225
    [TBL] [Abstract][Full Text] [Related]  

  • 33. iMulti-HumPhos: a multi-label classifier for identifying human phosphorylated proteins using multiple kernel learning based support vector machines.
    Hasan MAM; Ahmad S; Molla MKI
    Mol Biosyst; 2017 Jul; 13(8):1608-1618. PubMed ID: 28682387
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Accurate discrimination of outer membrane proteins using secondary structure element alignment and support vector machine.
    Ni Q; Zou L
    J Bioinform Comput Biol; 2014 Feb; 12(1):1450003. PubMed ID: 24467761
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Computational prediction of lysine acetylation proteome-wide.
    Basu A
    Methods Mol Biol; 2013; 981():127-36. PubMed ID: 23381858
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Identify and analysis crotonylation sites in histone by using support vector machines.
    Qiu WR; Sun BQ; Tang H; Huang J; Lin H
    Artif Intell Med; 2017 Nov; 83():75-81. PubMed ID: 28283358
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Computational screening for active compounds targeting protein sequences: methodology and experimental validation.
    Wang F; Liu D; Wang H; Luo C; Zheng M; Liu H; Zhu W; Luo X; Zhang J; Jiang H
    J Chem Inf Model; 2011 Nov; 51(11):2821-8. PubMed ID: 21955088
    [TBL] [Abstract][Full Text] [Related]  

  • 38. CalCleaveMKL: a Tool for Calpain Cleavage Prediction.
    duVerle DA; Mamitsuka H
    Methods Mol Biol; 2019; 1915():121-147. PubMed ID: 30617801
    [TBL] [Abstract][Full Text] [Related]  

  • 39. ProAcePred: prokaryote lysine acetylation sites prediction based on elastic net feature optimization.
    Chen G; Cao M; Luo K; Wang L; Wen P; Shi S
    Bioinformatics; 2018 Dec; 34(23):3999-4006. PubMed ID: 29868863
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Sequence-based prediction of DNA-binding residues in proteins with conservation and correlation information.
    Ma X; Guo J; Liu HD; Xie JM; Sun X
    IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(6):1766-75. PubMed ID: 22868682
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.