These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 28676701)

  • 1. Self-compensation in arsenic doping of CdTe.
    Ablekim T; Swain SK; Yin WJ; Zaunbrecher K; Burst J; Barnes TM; Kuciauskas D; Wei SH; Lynn KG
    Sci Rep; 2017 Jul; 7(1):4563. PubMed ID: 28676701
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of dopant-induced band tails on optical spectra, charge carrier transport, and dynamics in single-crystal CdTe.
    Ščajev P; Mekys A; Subačius L; Stanionytė S; Kuciauskas D; Lynn KG; Swain SK
    Sci Rep; 2022 Jul; 12(1):12851. PubMed ID: 35896581
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dependence of the minority-carrier lifetime on the stoichiometry of CdTe using time-resolved photoluminescence and first-principles calculations.
    Ma J; Kuciauskas D; Albin D; Bhattacharya R; Reese M; Barnes T; Li JV; Gessert T; Wei SH
    Phys Rev Lett; 2013 Aug; 111(6):067402. PubMed ID: 23971610
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Study on the Low Temperature Photoluminescence Spectra of II-VI Group Telluride Bulk Crystals.
    Xu YD; Liu H; He YH; Zhou Y; Jie WQ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Mar; 35(3):582-6. PubMed ID: 26117858
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Doping Limits of Phosphorus, Arsenic, and Antimony in CdTe.
    Chatratin I; Dou B; Wei SH; Janotti A
    J Phys Chem Lett; 2023 Jan; 14(1):273-278. PubMed ID: 36595563
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nature of AX centers in antimony-doped cadmium telluride nanobelts.
    Huang L; Lin CC; Riediger M; Röder R; Tse PL; Ronning C; Lu JG
    Nano Lett; 2015 Feb; 15(2):974-80. PubMed ID: 25602598
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced Thermoelectric Performance of Bi
    Tao Q; Deng R; Li J; Yan Y; Su X; Poudeu PFP; Tang X
    ACS Appl Mater Interfaces; 2020 Jun; 12(23):26330-26341. PubMed ID: 32401006
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-compensation in chlorine-doped CdTe.
    Orellana W; Menéndez-Proupin E; Flores MA
    Sci Rep; 2019 Jun; 9(1):9194. PubMed ID: 31235745
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis and enhanced fluorescence of Ag doped CdTe semiconductor quantum dots.
    Ding SJ; Liang S; Nan F; Liu XL; Wang JH; Zhou L; Yu XF; Hao ZH; Wang QQ
    Nanoscale; 2015 Feb; 7(5):1970-6. PubMed ID: 25536020
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The importance of phase equilibrium for doping efficiency: iodine doped PbTe.
    Male J; Agne MT; Goyal A; Anand S; Witting IT; Stevanović V; Snyder GJ
    Mater Horiz; 2019 Aug; 6(7):1444-1453. PubMed ID: 35090302
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Positron annihilation spectroscopy of vacancy-related defects in CdTe:Cl and CdZnTe:Ge at different stoichiometry deviations.
    Šedivý L; Čížek J; Belas E; Grill R; Melikhova O
    Sci Rep; 2016 Feb; 6():20641. PubMed ID: 26860684
    [TBL] [Abstract][Full Text] [Related]  

  • 12. p-type doping efficiency in CdTe: Influence of second phase formation.
    McCoy JJ; Swain SK; Sieber JR; Diercks DR; Gorman BP; Lynn KG
    J Appl Phys; 2018 Apr; 123(16):. PubMed ID: 29725138
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Arsenic doping and diffusion in CdTe: a DFT study of bulk and grain boundaries.
    Hatton P; Watts M; Zhou Y; Smith R; Goddard P
    J Phys Condens Matter; 2022 Dec; 35(7):. PubMed ID: 36541549
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of co-doping of donor and acceptor impurities in the ferromagnetic semiconductor Zn(1-x)Cr(x)Te studied by soft x-ray magnetic circular dichroism.
    Yamazaki Y; Kataoka T; Singh VR; Fujimori A; Chang FH; Huang DJ; Lin HJ; Chen CT; Ishikawa K; Zhang K; Kuroda S
    J Phys Condens Matter; 2011 May; 23(17):176002. PubMed ID: 21483085
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Studies of point defect formation and self-compensation in indium doped ZnO nanorods by STM and STS.
    González-Carrazco A; Herrera-Zaldívar M; Pal U
    J Nanosci Nanotechnol; 2008 Dec; 8(12):6598-602. PubMed ID: 19205247
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Performance Comparison of CdTe:Na, CdTe:As, and CdTe:P Single Crystals for Solar Cell Applications.
    Kim S; Kim D; Hong J; Elmughrabi A; Melis A; Yeom JY; Park C; Cho S
    Materials (Basel); 2022 Feb; 15(4):. PubMed ID: 35207948
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermoelectric power factor of pure and doped ZnSb via DFT based defect calculations.
    Berche A; Jund P
    Phys Chem Chem Phys; 2019 Oct; 21(41):23056-23064. PubMed ID: 31599887
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrafast carrier trapping of a metal-doped titanium dioxide semiconductor revealed by femtosecond transient absorption spectroscopy.
    Sun J; Yang Y; Khan JI; Alarousu E; Guo Z; Zhang X; Zhang Q; Mohammed OF
    ACS Appl Mater Interfaces; 2014 Jul; 6(13):10022-7. PubMed ID: 24918499
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Effect of Acceptor and Donor Doping on Oxygen Vacancy Concentrations in Lead Zirconate Titanate (PZT).
    Slouka C; Kainz T; Navickas E; Walch G; Hutter H; Reichmann K; Fleig J
    Materials (Basel); 2016 Nov; 9(11):. PubMed ID: 28774067
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flexible Solar Cells Using Doped Crystalline Si Film Prepared by Self-Biased Sputtering Solid Doping Source in SiCl4/H2 Microwave Plasma.
    Hsieh PY; Lee CY; Tai NH
    ACS Appl Mater Interfaces; 2016 Feb; 8(7):4624-32. PubMed ID: 26815945
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.