BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 28676786)

  • 1. Alterations in Localized Electrical Impedance Myography of Biceps Brachii Muscles Paralyzed by Spinal Cord Injury.
    Li L; Stampas A; Shin H; Li X; Zhou P
    Front Neurol; 2017; 8():253. PubMed ID: 28676786
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrical impedance myography changes after incomplete cervical spinal cord injury: An examination of hand muscles.
    Li L; Shin H; Stampas A; Li X; Zhou P
    Clin Neurophysiol; 2017 Nov; 128(11):2242-2247. PubMed ID: 29024874
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantifying the Changes of Mechanical and Electrical Properties of Paralyzed Muscle in Survivors With Cervical Spinal Cord Injury.
    Hu H; Chen Y; Wang X; Lo WLA; Li L
    Front Neurol; 2021; 12():720901. PubMed ID: 34566864
    [No Abstract]   [Full Text] [Related]  

  • 4. Localized Electrical Impedance Myography of the Biceps Brachii Muscle during Different Levels of Isometric Contraction and Fatigue.
    Li L; Shin H; Li X; Li S; Zhou P
    Sensors (Basel); 2016 Apr; 16(4):. PubMed ID: 27110795
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel phenotype characterization utilizing electrical impedance myography signatures in murine spinal cord injury neurogenic bladder models.
    Wang HS; Thaker H; Bigger-Allen A; Nagy JA; Rutkove SB
    Sci Rep; 2023 Nov; 13(1):19520. PubMed ID: 37945675
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessing the immediate impact of botulinum toxin injection on impedance of spastic muscle.
    Li X; Shin H; Li L; Magat E; Li S; Zhou P
    Med Eng Phys; 2017 May; 43():97-102. PubMed ID: 28169197
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrical Impedance Myography for Evaluating Paretic Muscle Changes After Stroke.
    Li X; Li L; Shin H; Li S; Zhou P
    IEEE Trans Neural Syst Rehabil Eng; 2017 Nov; 25(11):2113-2121. PubMed ID: 28574361
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterizing spinal muscular atrophy with electrical impedance myography.
    Rutkove SB; Shefner JM; Gregas M; Butler H; Caracciolo J; Lin C; Fogerson PM; Mongiovi P; Darras BT
    Muscle Nerve; 2010 Dec; 42(6):915-21. PubMed ID: 21104866
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrical impedance myography: transitioning from human to animal studies.
    Nie R; Sunmonu NA; Chin AB; Lee KS; Rutkove SB
    Clin Neurophysiol; 2006 Aug; 117(8):1844-9. PubMed ID: 16807097
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrical Impedance Myography in Dogs With Degenerative Myelopathy.
    Kowal JB; Verga SA; Pandeya SR; Cochran RJ; Sabol JC; Rutkove SB; Coates JR
    Front Vet Sci; 2022; 9():874277. PubMed ID: 35711791
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Effect of Subcutaneous Fat on Electrical Impedance Myography: Electrode Configuration and Multi-Frequency Analyses.
    Li L; Li X; Hu H; Shin H; Zhou P
    PLoS One; 2016; 11(5):e0156154. PubMed ID: 27227876
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Immediate Effects of Functional Electrical Stimulation-Assisted Cycling on the Paretic Muscles of Patients With Hemiparesis After Stroke: Evidence From Electrical Impedance Myography.
    Li L; Hu C; Leung KWC; Tong RKY
    Front Aging Neurosci; 2022; 14():880221. PubMed ID: 35651527
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interrater and Intrarater Reliability of Electrical Impedance Myography: A Comparison between Large and Small Handheld Electrode Arrays.
    Hu H; Lo WLA; Wang X; Li L; Zhou P
    J Healthc Eng; 2021; 2021():7296322. PubMed ID: 34765103
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrical impedance myography for assessment of Duchenne muscular dystrophy.
    Rutkove SB; Kapur K; Zaidman CM; Wu JS; Pasternak A; Madabusi L; Yim S; Pacheck A; Szelag H; Harrington T; Darras BT
    Ann Neurol; 2017 May; 81(5):622-632. PubMed ID: 28076894
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrical impedance myography detects age-related muscle change in mice.
    Arnold WD; Taylor RS; Li J; Nagy JA; Sanchez B; Rutkove SB
    PLoS One; 2017; 12(10):e0185614. PubMed ID: 29049394
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrical impedance myography in healthy volunteers.
    Offit MB; Mohammad Khanli H; Wu T; Lehky TJ
    Muscle Nerve; 2024 Mar; 69(3):288-294. PubMed ID: 37787098
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using machine learning algorithms to enhance the diagnostic performance of electrical impedance myography.
    Pandeya SR; Nagy JA; Riveros D; Semple C; Taylor RS; Hu A; Sanchez B; Rutkove SB
    Muscle Nerve; 2022 Sep; 66(3):354-361. PubMed ID: 35727064
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrical impedance myography detects age-related skeletal muscle atrophy in adult zebrafish.
    Rutkove SB; Callegari S; Concepcion H; Mourey T; Widrick J; Nagy JA; Nath AK
    Sci Rep; 2023 May; 13(1):7191. PubMed ID: 37137956
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Voluntary muscle weakness and co-activation after chronic cervical spinal cord injury.
    Thomas CK; Tucker ME; Bigland-Ritchie B
    J Neurotrauma; 1998 Feb; 15(2):149-61. PubMed ID: 9512090
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrical impedance myography for the detection of muscle inflammation induced by λ-carrageenan.
    Mortreux M; Semple C; Riveros D; Nagy JA; Rutkove SB
    PLoS One; 2019; 14(10):e0223265. PubMed ID: 31574117
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.