These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 28676887)
21. Arsenite-oxidizing and arsenate-reducing bacteria associated with arsenic-rich groundwater in Taiwan. Liao VH; Chu YJ; Su YC; Hsiao SY; Wei CC; Liu CW; Liao CM; Shen WC; Chang FJ J Contam Hydrol; 2011 Apr; 123(1-2):20-9. PubMed ID: 21216490 [TBL] [Abstract][Full Text] [Related]
22. Bacillus sp. SXB and Pantoea sp. IMH, aerobic As(V)-reducing bacteria isolated from arsenic-contaminated soil. Wu Q; Du J; Zhuang G; Jing C J Appl Microbiol; 2013 Mar; 114(3):713-21. PubMed ID: 23210693 [TBL] [Abstract][Full Text] [Related]
23. Diversity of biosurfactant producing microorganisms isolated from soils contaminated with diesel oil. Menezes Bento F; de Oliveira Camargo FA; Okeke BC; Frankenberger WT Microbiol Res; 2005; 160(3):249-55. PubMed ID: 16035236 [TBL] [Abstract][Full Text] [Related]
24. Recovery of microbial diversity and activity during bioremediation following chemical oxidation of diesel contaminated soils. Sutton NB; Langenhoff AA; Lasso DH; van der Zaan B; van Gaans P; Maphosa F; Smidt H; Grotenhuis T; Rijnaarts HH Appl Microbiol Biotechnol; 2014 Mar; 98(6):2751-64. PubMed ID: 24092007 [TBL] [Abstract][Full Text] [Related]
25. Hydrogen formation by an arsenate-reducing Pseudomonas putida, isolated from arsenic-contaminated groundwater in West Bengal, India. Freikowski D; Winter J; Gallert C Appl Microbiol Biotechnol; 2010 Dec; 88(6):1363-71. PubMed ID: 20821202 [TBL] [Abstract][Full Text] [Related]
26. Anaerobic oxidation of arsenite linked to chlorate reduction. Sun W; Sierra-Alvarez R; Milner L; Field JA Appl Environ Microbiol; 2010 Oct; 76(20):6804-11. PubMed ID: 20729322 [TBL] [Abstract][Full Text] [Related]
28. Oxidation of arsenite by two β-proteobacteria isolated from soil. Bachate SP; Khapare RM; Kodam KM Appl Microbiol Biotechnol; 2012 Mar; 93(5):2135-45. PubMed ID: 21983709 [TBL] [Abstract][Full Text] [Related]
29. Cr(VI) resistance and removal by indigenous bacteria isolated from chromium-contaminated soil. Long D; Tang X; Cai K; Chen G; Shen C; Shi J; Chen L; Chen Y J Microbiol Biotechnol; 2013 Aug; 23(8):1123-32. PubMed ID: 23727810 [TBL] [Abstract][Full Text] [Related]
30. Anaerobic arsenite oxidation by an autotrophic arsenite-oxidizing bacterium from an arsenic-contaminated paddy soil. Zhang J; Zhou W; Liu B; He J; Shen Q; Zhao FJ Environ Sci Technol; 2015 May; 49(10):5956-64. PubMed ID: 25905768 [TBL] [Abstract][Full Text] [Related]
31. Pseudomonas songnenensis sp. nov., isolated from saline and alkaline soils in Songnen Plain, China. Zhang L; Pan Y; Wang K; Zhang X; Zhang S; Fu X; Zhang C; Jiang J Antonie Van Leeuwenhoek; 2015 Mar; 107(3):711-21. PubMed ID: 25550067 [TBL] [Abstract][Full Text] [Related]
32. Removal of arsenic from groundwater by using a native isolated arsenite-oxidizing bacterium. Kao AC; Chu YJ; Hsu FL; Liao VH J Contam Hydrol; 2013 Dec; 155():1-8. PubMed ID: 24096199 [TBL] [Abstract][Full Text] [Related]
33. Biodegradation of 2,4-dichlorophenoxyacetic acid by bacteria with highly antibiotic-resistant pattern isolated from wheat field soils in Kurdistan, Iran. Karami S; Maleki A; Karimi E; Poormazaheri H; Zandi S; Davari B; Salimi YZ; Gharibi F; Kalantar E Environ Monit Assess; 2016 Dec; 188(12):659. PubMed ID: 27832433 [TBL] [Abstract][Full Text] [Related]
34. Isolation and identification of indigenous prokaryotic bacteria from arsenic-contaminated water resources and their impact on arsenic transformation. Jebelli MA; Maleki A; Amoozegar MA; Kalantar E; Shahmoradi B; Gharibi F Ecotoxicol Environ Saf; 2017 Jun; 140():170-176. PubMed ID: 28259061 [TBL] [Abstract][Full Text] [Related]
35. Phylogenetic and phenotypic analyses of arsenic-reducing bacteria isolated from an old tin mine area in Thailand. Jareonmit P; Mehta M; Sadowsky MJ; Sajjaphan K World J Microbiol Biotechnol; 2012 May; 28(5):2287-92. PubMed ID: 22806053 [TBL] [Abstract][Full Text] [Related]
36. Phosphate solubilizing rhizobacteria from an organic farm and their influence on the growth and yield of maize (Zea mays L.). Kaur G; Reddy MS J Gen Appl Microbiol; 2013; 59(4):295-303. PubMed ID: 24005179 [TBL] [Abstract][Full Text] [Related]
37. Release of arsenic from soil by a novel dissimilatory arsenate-reducing bacterium, Anaeromyxobacter sp. strain PSR-1. Kudo K; Yamaguchi N; Makino T; Ohtsuka T; Kimura K; Dong DT; Amachi S Appl Environ Microbiol; 2013 Aug; 79(15):4635-42. PubMed ID: 23709511 [TBL] [Abstract][Full Text] [Related]
38. Mechanism of arsenic resistance in endophytic bacteria isolated from endemic plant of mine tailings and their arsenophore production. Román-Ponce B; Ramos-Garza J; Arroyo-Herrera I; Maldonado-Hernández J; Bahena-Osorio Y; Vásquez-Murrieta MS; Wang ET Arch Microbiol; 2018 Aug; 200(6):883-895. PubMed ID: 29476206 [TBL] [Abstract][Full Text] [Related]
39. Arsenic-resistant bacteria isolated from contaminated sediments of the Orbetello Lagoon, Italy, and their characterization. Pepi M; Volterrani M; Renzi M; Marvasi M; Gasperini S; Franchi E; Focardi SE J Appl Microbiol; 2007 Dec; 103(6):2299-308. PubMed ID: 18045414 [TBL] [Abstract][Full Text] [Related]
40. Arsenic-tolerant, arsenite-oxidising bacterial strains in the contaminated soils of West Bengal, India. Majumder A; Bhattacharyya K; Bhattacharyya S; Kole SC Sci Total Environ; 2013 Oct; 463-464():1006-14. PubMed ID: 23876545 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]