These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 28676908)

  • 21. Microbial inhibitors: formation and effects on acetone-butanol-ethanol fermentation of lignocellulosic biomass.
    Baral NR; Shah A
    Appl Microbiol Biotechnol; 2014 Nov; 98(22):9151-72. PubMed ID: 25267161
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Furfural degradation by filamentous fungus Amorphotheca resinae ZN1].
    Wang X; Zhang J; Xin X; Bao J
    Sheng Wu Gong Cheng Xue Bao; 2012 Sep; 28(9):1070-9. PubMed ID: 23289309
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Electrochemical detoxification of phenolic compounds in lignocellulosic hydrolysate for Clostridium fermentation.
    Lee KM; Min K; Choi O; Kim KY; Woo HM; Kim Y; Han SO; Um Y
    Bioresour Technol; 2015; 187():228-234. PubMed ID: 25863199
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Exploring the inhibitory characteristics of acid hydrolysates upon butanol fermentation: A toxicological assessment.
    Wang Y; Guo W; Chen BY; Cheng CL; Lo YC; Ho SH; Chang JS; Ren N
    Bioresour Technol; 2015 Dec; 198():571-6. PubMed ID: 26433154
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enhanced biotransformation of furfural and hydroxymethylfurfural by newly developed ethanologenic yeast strains.
    Liu ZL; Slininger PJ; Gorsich SW
    Appl Biochem Biotechnol; 2005; 121-124():451-60. PubMed ID: 15917621
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mechanism of furfural toxicity and metabolic strategies to engineer tolerance in microbial strains.
    Jilani SB; Olson DG
    Microb Cell Fact; 2023 Oct; 22(1):221. PubMed ID: 37891678
    [TBL] [Abstract][Full Text] [Related]  

  • 27. In vivo detoxification of furfural during lipid production by the oleaginous yeast Trichosporon fermentans.
    Huang C; Wu H; Smith TJ; Liu ZJ; Lou WY; Zong MH
    Biotechnol Lett; 2012 Sep; 34(9):1637-42. PubMed ID: 22648683
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Inhibitory effects of furan derivatives and phenolic compounds on dark hydrogen fermentation.
    Lin R; Cheng J; Ding L; Song W; Zhou J; Cen K
    Bioresour Technol; 2015 Nov; 196():250-5. PubMed ID: 26247976
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Impacts of lignocellulose-derived inhibitors on L-lactic acid fermentation by Rhizopus oryzae.
    Zhang L; Li X; Yong Q; Yang ST; Ouyang J; Yu S
    Bioresour Technol; 2016 Mar; 203():173-80. PubMed ID: 26724548
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Isolation of microorganisms for biological detoxification of lignocellulosic hydrolysates.
    López MJ; Nichols NN; Dien BS; Moreno J; Bothast RJ
    Appl Microbiol Biotechnol; 2004 Mar; 64(1):125-31. PubMed ID: 12908085
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Isolation of 5-hydroxymethylfurfural biotransforming bacteria to produce 2,5-furan dicarboxylic acid in algal acid hydrolysate.
    Yang CF; Huang CR
    J Biosci Bioeng; 2018 Apr; 125(4):407-412. PubMed ID: 29183696
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Tolerance of the nanocellulose-producing bacterium Gluconacetobacter xylinus to lignocellulose-derived acids and aldehydes.
    Zhang S; Winestrand S; Chen L; Li D; Jönsson LJ; Hong F
    J Agric Food Chem; 2014 Oct; 62(40):9792-9. PubMed ID: 25186182
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A new source of resistance to 2-furaldehyde from Scheffersomyces (Pichia) stipitis for sustainable lignocellulose-to-biofuel conversion.
    Wang X; Lewis Liu Z; Zhang X; Ma M
    Appl Microbiol Biotechnol; 2017 Jun; 101(12):4981-4993. PubMed ID: 28357544
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enhancing cellulose accessibility of corn stover by deep eutectic solvent pretreatment for butanol fermentation.
    Xu GC; Ding JC; Han RZ; Dong JJ; Ni Y
    Bioresour Technol; 2016 Mar; 203():364-9. PubMed ID: 26597485
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bioabatement to remove inhibitors from biomass-derived sugar hydrolysates.
    Nichols NN; Dien BS; Guisado GM; López MJ
    Appl Biochem Biotechnol; 2005; 121-124():379-90. PubMed ID: 15917615
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characterization of a thermostable xylanase from a newly isolated Kluyvera species and its application for biobutanol production.
    Xin F; He J
    Bioresour Technol; 2013 May; 135():309-15. PubMed ID: 23186668
    [TBL] [Abstract][Full Text] [Related]  

  • 37. L-Glycine Alleviates Furfural-Induced Growth Inhibition during Isobutanol Production in Escherichia coli.
    Song HS; Jeon JM; Choi YK; Kim JY; Kim W; Yoon JJ; Park K; Ahn J; Lee H; Yang YH
    J Microbiol Biotechnol; 2017 Dec; 27(12):2165-2172. PubMed ID: 29032645
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Tolerance and adaptive evolution of triacylglycerol-producing Rhodococcus opacus to lignocellulose-derived inhibitors.
    Kurosawa K; Laser J; Sinskey AJ
    Biotechnol Biofuels; 2015; 8():76. PubMed ID: 26052344
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Quantitative proteome profiles help reveal efficient xylose utilization mechanisms in solventogenic Clostridium sp. strain BOH3.
    Basu A; Xin F; Lim TK; Lin Q; Yang KL; He J
    Biotechnol Bioeng; 2017 Sep; 114(9):1959-1969. PubMed ID: 28475235
    [TBL] [Abstract][Full Text] [Related]  

  • 40. FudC, a protein primarily responsible for furfural detoxification in Corynebacterium glutamicum.
    Tsuge Y; Kudou M; Kawaguchi H; Ishii J; Hasunuma T; Kondo A
    Appl Microbiol Biotechnol; 2016 Mar; 100(6):2685-92. PubMed ID: 26541332
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.