These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 28677041)

  • 21. The effects of extracellular polymeric substances on magnetic iron oxide nanoparticles stability and the removal of microcystin-LR in aqueous environments.
    Yang Y; Hou J; Wang P; Wang C; Miao L; Ao Y; Wang X; Lv B; You G; Liu Z; Shao Y
    Ecotoxicol Environ Saf; 2018 Feb; 148():89-96. PubMed ID: 29031879
    [TBL] [Abstract][Full Text] [Related]  

  • 22. One-step hydrothermal synthesis of N-doped TiO2/C nanocomposites with high visible light photocatalytic activity.
    Wang DH; Jia L; Wu XL; Lu LQ; Xu AW
    Nanoscale; 2012 Jan; 4(2):576-84. PubMed ID: 22143193
    [TBL] [Abstract][Full Text] [Related]  

  • 23. LC/MS/MS structure elucidation of reaction intermediates formed during the TiO(2) photocatalysis of microcystin-LR.
    Antoniou MG; Shoemaker JA; de la Cruz AA; Dionysiou DD
    Toxicon; 2008 May; 51(6):1103-18. PubMed ID: 18377943
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A novel photocatalytic material for removing microcystin-LR under visible light irradiation: degradation characteristics and mechanisms.
    Sui X; Wang X; Huang H; Peng G; Wang S; Fan Z
    PLoS One; 2014; 9(4):e95798. PubMed ID: 24755986
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Magnetic recyclable visible light-driven Bi
    Zhan M; Hong Y; Fang Z; Qiu D
    Environ Res; 2024 Jul; 252(Pt 2):118885. PubMed ID: 38614200
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dispersion-precipitation synthesis of nanosized magnetic iron oxide for efficient removal of arsenite in water.
    Cheng W; Xu J; Wang Y; Wu F; Xu X; Li J
    J Colloid Interface Sci; 2015 May; 445():93-101. PubMed ID: 25612934
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Room-temperature synthesis of Zn(0.80)Cd(0.20)S solid solution with a high visible-light photocatalytic activity for hydrogen evolution.
    Wang DH; Wang L; Xu AW
    Nanoscale; 2012 Mar; 4(6):2046-53. PubMed ID: 22327298
    [TBL] [Abstract][Full Text] [Related]  

  • 28. High performance sulfur, nitrogen and carbon doped mesoporous anatase-brookite TiO₂ photocatalyst for the removal of microcystin-LR under visible light irradiation.
    El-Sheikh SM; Zhang G; El-Hosainy HM; Ismail AA; O'Shea KE; Falaras P; Kontos AG; Dionysiou DD
    J Hazard Mater; 2014 Sep; 280():723-33. PubMed ID: 25238189
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enhanced photocatalytic activity and stability of alumina supported hematite for azo-dye degradation in aerated aqueous suspension.
    Li Z; Sheng J; Wang Y; Xu Y
    J Hazard Mater; 2013 Jun; 254-255():18-25. PubMed ID: 23583945
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Preparation of novel flower-like BiVO
    Wang D; Li J; Xu Z; Zhu Y; Chen G
    J Colloid Interface Sci; 2019 Jan; 533():344-357. PubMed ID: 30172145
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Unique ability of BiOBr to decarboxylate d-Glu and d-MeAsp in the photocatalytic degradation of microcystin-LR in water.
    Yanfen F; Yingping H; Jing Y; Pan W; Genwei C
    Environ Sci Technol; 2011 Feb; 45(4):1593-600. PubMed ID: 21247106
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fenton-like oxidation of Rhodamine B in the presence of two types of iron (II, III) oxide.
    Xue X; Hanna K; Deng N
    J Hazard Mater; 2009 Jul; 166(1):407-14. PubMed ID: 19167810
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Removal of microcystin-LR and microcystin-RR by graphene oxide: adsorption and kinetic experiments.
    Pavagadhi S; Tang AL; Sathishkumar M; Loh KP; Balasubramanian R
    Water Res; 2013 Sep; 47(13):4621-9. PubMed ID: 23764611
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Adsorption and regeneration on iron-activated biochar for removal of microcystin-LR.
    Zeng S; Kan E
    Chemosphere; 2021 Jun; 273():129649. PubMed ID: 33497982
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Role of Fe(III) in aqueous solution or deposited on ZnO surface in the photoassisted degradation of rhodamine B and caffeine.
    Tanji K; Navio JA; Martín-Gómez AN; Hidalgo MC; Jaramillo-Páez C; Naja J; Hassoune H; Kherbeche A
    Chemosphere; 2020 Feb; 241():125009. PubMed ID: 31597109
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Adsorption and photodegradation of microcystin-LR onto sediments collected from reservoirs and rivers in Taiwan: a laboratory study to investigate the fate, transfer, and degradation of microcystin-LR.
    Munusamy T; Hu YL; Lee JF
    Environ Sci Pollut Res Int; 2012 Jul; 19(6):2390-9. PubMed ID: 22274794
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Proton and iron binding by the cyanobacterial toxin microcystin-LR.
    Klein AR; Baldwin DS; Silvester E
    Environ Sci Technol; 2013 May; 47(10):5178-84. PubMed ID: 23586662
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The degradation of microcystin-LR using doped visible light absorbing photocatalysts.
    Graham D; Kisch H; Lawton LA; Robertson PK
    Chemosphere; 2010 Feb; 78(9):1182-5. PubMed ID: 20056264
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mesoporous zinc ferrite: synthesis, characterization, and photocatalytic activity with H2O2/visible light.
    Su M; He C; Sharma VK; Abou Asi M; Xia D; Li XZ; Deng H; Xiong Y
    J Hazard Mater; 2012 Apr; 211-212():95-103. PubMed ID: 22018870
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Efficient degradation of microcystin-LR by BiVO
    Jafari N; Ebrahimpour K; Abdolahnejad A; Karimi M; Ebrahimi A
    J Environ Health Sci Eng; 2019 Dec; 17(2):1171-1183. PubMed ID: 32030183
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.