These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 28677041)

  • 41. Photodegradation of 2-mercaptobenzothiazole in the gamma-Fe(2)O(3)/oxalate suspension under UVA light irradiation.
    Wang X; Liu C; Li X; Li F; Zhou S
    J Hazard Mater; 2008 May; 153(1-2):426-33. PubMed ID: 17913355
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effectiveness and intermediates of microcystin-LR degradation by UV/H
    Liu J; Ye JS; Ou HS; Lin J
    Environ Sci Pollut Res Int; 2017 Feb; 24(5):4676-4684. PubMed ID: 27975200
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Magnetic nanoparticles for in vivo use: a critical assessment of their composition.
    da Costa GM; Blanco-Andujar C; De Grave E; Pankhurst QA
    J Phys Chem B; 2014 Oct; 118(40):11738-46. PubMed ID: 25211599
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Preparation of magnetic recoverable nanosize Cu-Fe2O3/Fe photocatalysts.
    Kang HY; Wang HP
    Environ Sci Technol; 2013 Jul; 47(13):7380-7. PubMed ID: 23790076
    [TBL] [Abstract][Full Text] [Related]  

  • 45. High-efficient and sustainable biodegradation of microcystin-LR using Sphingopyxis sp. YF1 immobilized Fe
    Wu P; Li G; He Y; Luo D; Li L; Guo J; Ding P; Yang F
    Colloids Surf B Biointerfaces; 2020 Jan; 185():110633. PubMed ID: 31740324
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Visible light-driven photocatalytic degradation of Microcystin-LR by Bi
    Zhan M; Hong Y; Fang Z; Qiu D
    Chemosphere; 2023 Apr; 321():138105. PubMed ID: 36764614
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Oxalate enhanced degradation of Orange II in heterogeneous UV-Fenton system catalyzed by Fe
    Dai H; Xu S; Chen J; Miao X; Zhu J
    Chemosphere; 2018 May; 199():147-153. PubMed ID: 29433028
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Zn₂SnO₄-Reduced Graphene Oxide Nanohybrids for Visible-Light-Driven Photocatalysis.
    Li H; Wu XF; Sun Y; Zhao ZH; Zhang CX; Jia FF; Zhang H; Yu MT; Yang XY
    J Nanosci Nanotechnol; 2018 Feb; 18(2):999-1005. PubMed ID: 29448525
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Au-Pd/mesoporous Fe
    Lin H; Liu Y; Deng J; Zhang K; Zhang X; Xie S; Zhao X; Yang J; Han Z; Dai H
    J Environ Sci (China); 2018 Aug; 70():74-86. PubMed ID: 30037413
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Synthesis of Mg-Doped TiO2 nanoparticles under different conditions and its photocatalytic activity.
    Behnajady MA; Alizade B; Modirshahla N
    Photochem Photobiol; 2011; 87(6):1308-14. PubMed ID: 21913938
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Micro-structural analysis of NiFe2O4 nanoparticles synthesized by thermal plasma route and its suitability for BSA adsorption.
    Bhosale SV; Kanhe NS; Bhoraskar SV; Bhat SK; Bulakhe RN; Shim JJ; Mathe VL
    J Mater Sci Mater Med; 2015 Aug; 26(8):216. PubMed ID: 26216552
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Investigating Microcystin-LR adsorption mechanisms on mesoporous carbon, mesoporous silica, and their amino-functionalized form: Surface chemistry, pore structures, and molecular characteristics.
    Park JA; Kang JK; Jung SM; Choi JW; Lee SH; Yargeau V; Kim SB
    Chemosphere; 2020 May; 247():125811. PubMed ID: 31945720
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Comparison of the solar photocatalytic activity of ZnO-Fe2O3 and ZnO-Fe(0) on 2,4-D degradation in a CPC reactor.
    Maya-Treviño ML; Villanueva-Rodríguez M; Guzmán-Mar JL; Hinojosa-Reyes L; Hernández-Ramírez A
    Photochem Photobiol Sci; 2015 Mar; 14(3):543-9. PubMed ID: 25355553
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Novel magnetically separable silver-iron oxide nanoparticles decorated graphitic carbon nitride nano-sheets: A multifunctional photocatalyst via one-step hydrothermal process.
    Pant B; Park M; Lee JH; Kim HY; Park SJ
    J Colloid Interface Sci; 2017 Jun; 496():343-352. PubMed ID: 28237752
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Visible light responsive sulfated rare earth doped TiO(2)@fumed SiO(2) composites with mesoporosity: enhanced photocatalytic activity for methyl orange degradation.
    Zhan C; Chen F; Yang J; Dai D; Cao X; Zhong M
    J Hazard Mater; 2014 Feb; 267():88-97. PubMed ID: 24418494
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Unveiling new degradation intermediates/pathways from the photocatalytic degradation of microcystin-LR.
    Antoniou MG; Shoemaker JA; De la Cruz AA; Dionysiou DD
    Environ Sci Technol; 2008 Dec; 42(23):8877-83. PubMed ID: 19192812
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Ferrate(VI)-induced arsenite and arsenate removal by in situ structural incorporation into magnetic iron(III) oxide nanoparticles.
    Prucek R; Tuček J; Kolařík J; Filip J; Marušák Z; Sharma VK; Zbořil R
    Environ Sci Technol; 2013 Apr; 47(7):3283-92. PubMed ID: 23451768
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Efficient removal of microcystin-LR by UV-C/H₂O₂ in synthetic and natural water samples.
    He X; Pelaez M; Westrick JA; O'Shea KE; Hiskia A; Triantis T; Kaloudis T; Stefan MI; de la Cruz AA; Dionysiou DD
    Water Res; 2012 Apr; 46(5):1501-10. PubMed ID: 22177771
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Photocatalytic study and superparamagnetic nature of Zn-doped MgFe
    Manohar A; Krishnamoorthi C
    J Photochem Photobiol B; 2017 Aug; 173():456-465. PubMed ID: 28668514
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Mn-doped carbon xerogels as catalyst in the removal of microcystin-LR by water-surface discharge plasma.
    Xin Q; Zhang Y; Wu KB
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2013; 48(3):293-9. PubMed ID: 23245304
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.