These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 28677098)

  • 1. Integration of solid-state nanopores into a functional device designed for electrical and optical cross-monitoring.
    Marchand R; Thibault C; Carcenac F; Vieu C; Trévisiol E
    Biomed Microdevices; 2017 Sep; 19(3):60. PubMed ID: 28677098
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transparent Nanopore Cavity Arrays Enable Highly Parallelized Optical Studies of Single Membrane Proteins on Chip.
    Diederichs T; Nguyen QH; Urban M; Tampé R; Tornow M
    Nano Lett; 2018 Jun; 18(6):3901-3910. PubMed ID: 29741381
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanopore-spanning lipid bilayers on silicon nitride membranes that seal and selectively transport ions.
    Korman CE; Megens M; Ajo-Franklin CM; Horsley DA
    Langmuir; 2013 Apr; 29(14):4421-5. PubMed ID: 23528109
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integrating nanopore sensors within microfluidic channel arrays using controlled breakdown.
    Tahvildari R; Beamish E; Tabard-Cossa V; Godin M
    Lab Chip; 2015 Mar; 15(6):1407-11. PubMed ID: 25631885
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lipid bilayer coated Al(2)O(3) nanopore sensors: towards a hybrid biological solid-state nanopore.
    Venkatesan BM; Polans J; Comer J; Sridhar S; Wendell D; Aksimentiev A; Bashir R
    Biomed Microdevices; 2011 Aug; 13(4):671-82. PubMed ID: 21487665
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrophysiology of Epithelial Sodium Channel (ENaC) Embedded in Supported Lipid Bilayer Using a Single Nanopore Chip.
    Khan MS; Dosoky NS; Mustafa G; Patel D; Berdiev B; Williams JD
    Langmuir; 2017 Nov; 33(47):13680-13688. PubMed ID: 29131643
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Mask-Free Passivation Process for Low Noise Nanopore Devices.
    Lim MC; Lee MH; Kim KB; Jeon TJ; Kim YR
    J Nanosci Nanotechnol; 2015 Aug; 15(8):5971-7. PubMed ID: 26369183
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Atomic force microscopy imaging and electrical recording of lipid bilayers supported over microfabricated silicon chip nanopores: lab-on-a-chip system for lipid membranes and ion channels.
    Quist AP; Chand A; Ramachandran S; Daraio C; Jin S; Lal R
    Langmuir; 2007 Jan; 23(3):1375-80. PubMed ID: 17241061
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design, fabrication, and characterization of archaeal tetraether free-standing planar membranes in a PDMS- and PCB-based fluidic platform.
    Ren X; Liu K; Zhang Q; Noh HM; Kumbur EC; Yuan WW; Zhou JG; Chong PL
    ACS Appl Mater Interfaces; 2014 Aug; 6(15):12618-28. PubMed ID: 24937508
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formation of lipid bilayers inside microfluidic channel array for monitoring membrane-embedded nanopores of phi29 DNA packaging nanomotor.
    Shim JS; Geng J; Ahn CH; Guo P
    Biomed Microdevices; 2012 Oct; 14(5):921-8. PubMed ID: 22773160
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A gigaseal obtained with a self-assembled long-lifetime lipid bilayer on a single polyelectrolyte multilayer-filled nanopore.
    Sugihara K; Vörös J; Zambelli T
    ACS Nano; 2010 Sep; 4(9):5047-54. PubMed ID: 20687537
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Miniaturized planar lipid bilayer: increased stability, low electric noise and fast fluid perfusion.
    Mach T; Chimerel C; Fritz J; Fertig N; Winterhalter M; Fütterer C
    Anal Bioanal Chem; 2008 Feb; 390(3):841-6. PubMed ID: 17972068
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microfluidic multiplexing of solid-state nanopores.
    Jain T; Rasera BC; Guerrero RJS; Lim JM; Karnik R
    J Phys Condens Matter; 2017 Dec; 29(48):484001. PubMed ID: 29116942
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solid-State Nanopore Easy Chip Integration in a Cheap and Reusable Microfluidic Device for Ion Transport and Polymer Conformation Sensing.
    Roman J; Français O; Jarroux N; Patriarche G; Pelta J; Bacri L; Le Pioufle B
    ACS Sens; 2018 Oct; 3(10):2129-2137. PubMed ID: 30284814
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluid surface coatings for solid-state nanopores: comparison of phospholipid bilayers and archaea-inspired lipid monolayers.
    Eggenberger OM; Leriche G; Koyanagi T; Ying C; Houghtaling J; Schroeder TBH; Yang J; Li J; Hall A; Mayer M
    Nanotechnology; 2019 Aug; 30(32):325504. PubMed ID: 30991368
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On-chip label-free impedance-based detection of antibiotic permeation.
    Kaur J; Ghorbanpoor H; Öztürk Y; Kaygusuz Ö; Avcı H; Darcan C; Trabzon L; Güzel FD
    IET Nanobiotechnol; 2021 Feb; 15(1):100-106. PubMed ID: 34694729
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Well-defined microapertures for ion channel biosensors.
    Halža E; Bro TH; Bilenberg B; Koçer A
    Anal Chem; 2013 Jan; 85(2):811-5. PubMed ID: 23256755
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly reproducible method of planar lipid bilayer reconstitution in polymethyl methacrylate microfluidic chip.
    Suzuki H; Tabata KV; Noji H; Takeuchi S
    Langmuir; 2006 Feb; 22(4):1937-42. PubMed ID: 16460131
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reconstitution of ion channels in agarose-supported silicon orifices.
    Maurer JA; White VE; Dougherty DA; Nadeau JL
    Biosens Bioelectron; 2007 May; 22(11):2577-84. PubMed ID: 17098413
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanopore-based single-molecule mass spectrometry on a lipid membrane microarray.
    Baaken G; Ankri N; Schuler AK; Rühe J; Behrends JC
    ACS Nano; 2011 Oct; 5(10):8080-8. PubMed ID: 21932787
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.