These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 28677146)

  • 1. Genes essential for phototrophic growth by a purple alphaproteobacterium.
    Yang J; Yin L; Lessner FH; Nakayasu ES; Payne SH; Fixen KR; Gallagher L; Harwood CS
    Environ Microbiol; 2017 Sep; 19(9):3567-3578. PubMed ID: 28677146
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Essential Genome of the Metabolically Versatile Alphaproteobacterium Rhodopseudomonas palustris.
    Pechter KB; Gallagher L; Pyles H; Manoil CS; Harwood CS
    J Bacteriol; 2015 Dec; 198(5):867-76. PubMed ID: 26712940
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Redox Regulation of a Light-Harvesting Antenna Complex in an Anoxygenic Phototroph.
    Fixen KR; Oda Y; Harwood CS
    mBio; 2019 Nov; 10(6):. PubMed ID: 31772049
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phototrophic Lactate Utilization by
    Govindaraju A; McKinlay JB; LaSarre B
    Appl Environ Microbiol; 2019 Jun; 85(11):. PubMed ID: 30902855
    [TBL] [Abstract][Full Text] [Related]  

  • 5. FixK, a global regulator of microaerobic growth, controls photosynthesis in Rhodopseudomonas palustris.
    Rey FE; Harwood CS
    Mol Microbiol; 2010 Feb; 75(4):1007-20. PubMed ID: 20487293
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proteome Response of a Metabolically Flexible Anoxygenic Phototroph to Fe(II) Oxidation.
    Bryce C; Franz-Wachtel M; Nalpas NC; Miot J; Benzerara K; Byrne JM; Kleindienst S; Macek B; Kappler A
    Appl Environ Microbiol; 2018 Aug; 84(16):. PubMed ID: 29915106
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A polymorphism in the oxygen-responsive repressor PpsR2 confers a growth advantage to Rhodopseudomonas palustris under low light.
    Fixen KR; Harwood CS
    Photosynth Res; 2016 Aug; 129(2):199-204. PubMed ID: 27344652
    [TBL] [Abstract][Full Text] [Related]  

  • 8. System-level analysis of metabolic trade-offs during anaerobic photoheterotrophic growth in Rhodopseudomonas palustris.
    Navid A; Jiao Y; Wong SE; Pett-Ridge J
    BMC Bioinformatics; 2019 May; 20(1):233. PubMed ID: 31072303
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Disjointed Pathway for Malonate Degradation by Rhodopseudomonas palustris.
    Wang Z; Wen Q; Harwood CS; Liang B; Yang J
    Appl Environ Microbiol; 2020 May; 86(11):. PubMed ID: 32220835
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anaerobic phototrophic nitrite oxidation by Thiocapsa sp. strain KS1 and Rhodopseudomonas sp. strain LQ17.
    Schott J; Griffin BM; Schink B
    Microbiology (Reading); 2010 Aug; 156(Pt 8):2428-2437. PubMed ID: 20447994
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phototrophic extracellular electron uptake is linked to carbon dioxide fixation in the bacterium Rhodopseudomonas palustris.
    Guzman MS; Rengasamy K; Binkley MM; Jones C; Ranaivoarisoa TO; Singh R; Fike DA; Meacham JM; Bose A
    Nat Commun; 2019 Mar; 10(1):1355. PubMed ID: 30902976
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential accumulation of form I RubisCO in Rhodopseudomonas palustris CGA010 under Photoheterotrophic growth conditions with reduced carbon sources.
    Joshi GS; Romagnoli S; Verberkmoes NC; Hettich RL; Pelletier D; Tabita FR
    J Bacteriol; 2009 Jul; 191(13):4243-50. PubMed ID: 19376869
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular Basis of Bacterial Longevity.
    Pechter KB; Yin L; Oda Y; Gallagher L; Yang J; Manoil C; Harwood CS
    mBio; 2017 Nov; 8(6):. PubMed ID: 29184015
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of the phototrophic iron oxidation (pio) genes in Rhodopseudomonas palustris TIE-1 is mediated by the global regulator, FixK.
    Bose A; Newman DK
    Mol Microbiol; 2011 Jan; 79(1):63-75. PubMed ID: 21166894
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rhodopseudomonas palustris CGA009 has two functional ppsR genes, each of which encodes a repressor of photosynthesis gene expression.
    Braatsch S; Bernstein JR; Lessner F; Morgan J; Liao JC; Harwood CS; Beatty JT
    Biochemistry; 2006 Dec; 45(48):14441-51. PubMed ID: 17128983
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination and comparison of the baseline proteomes of the versatile microbe Rhodopseudomonas palustris under its major metabolic states.
    VerBerkmoes NC; Shah MB; Lankford PK; Pelletier DA; Strader MB; Tabb DL; McDonald WH; Barton JW; Hurst GB; Hauser L; Davison BH; Beatty JT; Harwood CS; Tabita FR; Hettich RL; Larimer FW
    J Proteome Res; 2006 Feb; 5(2):287-98. PubMed ID: 16457594
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dual role for a bacteriophytochrome in the bioenergetic control of Rhodopseudomonas palustris: enhancement of photosystem synthesis and limitation of respiration.
    Kojadinovic M; Laugraud A; Vuillet L; Fardoux J; Hannibal L; Adriano JM; Bouyer P; Giraud E; Verméglio A
    Biochim Biophys Acta; 2008 Feb; 1777(2):163-72. PubMed ID: 17988648
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A periplasmic, alpha-type carbonic anhydrase from Rhodopseudomonas palustris is essential for bicarbonate uptake.
    Puskás LG; Inui M; Zahn K; Yukawa H
    Microbiology (Reading); 2000 Nov; 146 ( Pt 11)():2957-2966. PubMed ID: 11065374
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The pio operon is essential for phototrophic Fe(II) oxidation in Rhodopseudomonas palustris TIE-1.
    Jiao Y; Newman DK
    J Bacteriol; 2007 Mar; 189(5):1765-73. PubMed ID: 17189359
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microaerophilic growth and induction of the photosynthetic reaction center in Rhodopseudomonas viridis.
    Lang FS; Oesterhelt D
    J Bacteriol; 1989 May; 171(5):2827-34. PubMed ID: 2651419
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.