These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 28677251)

  • 1. Ketone Formation from Carboxylic Acids by Ketonic Decarboxylation: The Exceptional Case of the Tertiary Carboxylic Acids.
    Oliver-Tomas B; Renz M; Corma A
    Chemistry; 2017 Sep; 23(52):12900-12908. PubMed ID: 28677251
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ketonic decarboxylation reaction mechanism: a combined experimental and DFT study.
    Pulido A; Oliver-Tomas B; Renz M; Boronat M; Corma A
    ChemSusChem; 2013 Jan; 6(1):141-51. PubMed ID: 23203990
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carbon-Carbon Bond Formation and Hydrogen Production in the Ketonization of Aldehydes.
    Orozco LM; Renz M; Corma A
    ChemSusChem; 2016 Sep; 9(17):2430-42. PubMed ID: 27539722
    [TBL] [Abstract][Full Text] [Related]  

  • 4. γ-Valerolactone ring-opening and decarboxylation over SiO2/Al2O3 in the presence of water.
    Bond JQ; Alonso DM; West RM; Dumesic JA
    Langmuir; 2010 Nov; 26(21):16291-8. PubMed ID: 20513157
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An unexplored O2-involved pathway for the decarboxylation of saturated carboxylic acids by TiO2 photocatalysis: an isotopic probe study.
    Wen B; Li Y; Chen C; Ma W; Zhao J
    Chemistry; 2010 Oct; 16(39):11859-66. PubMed ID: 20857460
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Radical photocyclization route for macrocyclic lactone ring expansion and conversion to macrocyclic lactams and ketones.
    Nishikawa K; Yoshimi Y; Maeda K; Morita T; Takahashi I; Itou T; Inagaki S; Hatanaka M
    J Org Chem; 2013 Jan; 78(2):582-9. PubMed ID: 23253018
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spectroscopic and electronic structure studies of the role of active site interactions in the decarboxylation reaction of alpha-keto acid-dependent dioxygenases.
    Neidig ML; Brown CD; Kavana M; Choroba OW; Spencer JB; Moran GR; Solomon EI
    J Inorg Biochem; 2006 Dec; 100(12):2108-16. PubMed ID: 17070917
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Trifluoromethyl ketones from enolizable carboxylic acids via enediolate trifluoroacetylation/decarboxylation.
    Reeves JT; Song JJ; Tan Z; Lee H; Yee NK; Senanayake CH
    J Org Chem; 2008 Dec; 73(23):9476-8. PubMed ID: 18973383
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrolytic decarboxylation of carboxylic acids and the formation of protonated carbonic acid.
    Mundle SO; Lacrampe-Couloume G; Lollar BS; Kluger R
    J Am Chem Soc; 2010 Feb; 132(7):2430-6. PubMed ID: 20121187
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coupling of electron transfer to proton uptake at the Q(B) site of the bacterial reaction center: a perspective from FTIR difference spectroscopy.
    Nabedryk E; Breton J
    Biochim Biophys Acta; 2008 Oct; 1777(10):1229-48. PubMed ID: 18671937
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative mechanisms of vitamin B6-catalyzed beta-decarboxylation and beta-dephosphonylation in model systems.
    Szpoganicz B; Martell AE
    Biochimie; 1989 Apr; 71(4):591-7. PubMed ID: 2503064
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thealpha-oxidation system of brain microsomes. Cofactors foralpha-hydroxy acid decarboxylation.
    Macdonald RC; Mead JF
    Lipids; 1968 May; 3(3):275-83. PubMed ID: 17805870
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electronic Factors Influencing the Decarboxylation of beta-Keto Acids. A Model Enzyme Study.
    Bach RD; Canepa C
    J Org Chem; 1996 Sep; 61(18):6346-6353. PubMed ID: 11667476
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Decarboxylation with Carbon Monoxide: The Direct Conversion of Carboxylic Acids into Potent Acid Triflate Electrophiles.
    Kinney RG; Arndtsen BA
    Angew Chem Int Ed Engl; 2019 Apr; 58(15):5085-5089. PubMed ID: 30776306
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A computational study on the mechanism of ynamide-mediated amide bond formation from carboxylic acids and amines.
    Zhang SL; Wan HX; Deng ZQ
    Org Biomol Chem; 2017 Aug; 15(30):6367-6374. PubMed ID: 28717802
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct catalytic asymmetric mannich reactions of malonates and beta-keto esters.
    Marigo M; Kjaersgaard A; Juhl K; Gathergood N; Jørgensen KA
    Chemistry; 2003 May; 9(10):2359-67. PubMed ID: 12772311
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reactions of alternate substrates demonstrate stereoelectronic control of reactivity in dialkylglycine decarboxylase.
    Sun S; Zabinski RF; Toney MD
    Biochemistry; 1998 Mar; 37(11):3865-75. PubMed ID: 9521707
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heterogeneous ketonic decarboxylation of dodecanoic acid: studying reaction parameters.
    Perera-Solis DD; Zholobenko VL; Whiting A; Greenwell HC
    RSC Adv; 2021 Oct; 11(56):35575-35584. PubMed ID: 35493138
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermodynamics of the clusterization process of cis isomers of unsaturated fatty acids at the air/water interface.
    Vysotsky YB; Belyaeva EA; Fainerman VB; Vollhardt D; Aksenenko EV; Miller R
    J Phys Chem B; 2009 Apr; 113(13):4347-59. PubMed ID: 19320525
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The dimethyldioxirane-mediated oxidation of phenylethyne.
    Zeller KP; Kowallik M; Haiss P
    Org Biomol Chem; 2005 Jun; 3(12):2310-8. PubMed ID: 16010366
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.