These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

357 related articles for article (PubMed ID: 28677296)

  • 41. Pseudomonas syringae pv. tomato exploits light signals to optimize virulence and colonization of leaves.
    Santamaría-Hernando S; Rodríguez-Herva JJ; Martínez-García PM; Río-Álvarez I; González-Melendi P; Zamorano J; Tapia C; Rodríguez-Palenzuela P; López-Solanilla E
    Environ Microbiol; 2018 Dec; 20(12):4261-4280. PubMed ID: 30058114
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Pseudomonas syringae pv. tomato DC3000: a model pathogen for probing disease susceptibility and hormone signaling in plants.
    Xin XF; He SY
    Annu Rev Phytopathol; 2013; 51():473-98. PubMed ID: 23725467
    [TBL] [Abstract][Full Text] [Related]  

  • 43. SGT1 contributes to coronatine signaling and Pseudomonas syringae pv. tomato disease symptom development in tomato and Arabidopsis.
    Uppalapati SR; Ishiga Y; Ryu CM; Ishiga T; Wang K; Noël LD; Parker JE; Mysore KS
    New Phytol; 2011 Jan; 189(1):83-93. PubMed ID: 20854394
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Pseudomonas syringae pv. tomato DC3000 uses constitutive and apoplast-induced nutrient assimilation pathways to catabolize nutrients that are abundant in the tomato apoplast.
    Rico A; Preston GM
    Mol Plant Microbe Interact; 2008 Feb; 21(2):269-82. PubMed ID: 18184070
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Pseudomonas syringae lytic transglycosylases coregulated with the type III secretion system contribute to the translocation of effector proteins into plant cells.
    Oh HS; Kvitko BH; Morello JE; Collmer A
    J Bacteriol; 2007 Nov; 189(22):8277-89. PubMed ID: 17827286
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Pseudomonas syringae HrpP Is a type III secretion substrate specificity switch domain protein that is translocated into plant cells but functions atypically for a substrate-switching protein.
    Morello JE; Collmer A
    J Bacteriol; 2009 May; 191(9):3120-31. PubMed ID: 19270091
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Molecular and evolutionary analyses of Pseudomonas syringae pv. tomato race 1.
    Kunkeaw S; Tan S; Coaker G
    Mol Plant Microbe Interact; 2010 Apr; 23(4):415-24. PubMed ID: 20192829
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Identification of a twin-arginine translocation system in Pseudomonas syringae pv. tomato DC3000 and its contribution to pathogenicity and fitness.
    Bronstein PA; Marrichi M; Cartinhour S; Schneider DJ; DeLisa MP
    J Bacteriol; 2005 Dec; 187(24):8450-61. PubMed ID: 16321949
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Pseudomonas syringae type III effector AvrPtoB is phosphorylated in plant cells on serine 258, promoting its virulence activity.
    Xiao F; Giavalisco P; Martin GB
    J Biol Chem; 2007 Oct; 282(42):30737-44. PubMed ID: 17711844
    [TBL] [Abstract][Full Text] [Related]  

  • 50.
    Namgung M; Lim YJ; Kang MK; Oh CS; Park DH
    J Microbiol Biotechnol; 2019 Dec; 29(12):1975-1981. PubMed ID: 31601061
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Functional and computational analysis of amino acid patterns predictive of type III secretion system substrates in Pseudomonas syringae.
    Schechter LM; Valenta JC; Schneider DJ; Collmer A; Sakk E
    PLoS One; 2012; 7(4):e36038. PubMed ID: 22558318
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Negative Autogenous Control of the Master Type III Secretion System Regulator HrpL in Pseudomonas syringae.
    Waite C; Schumacher J; Jovanovic M; Bennett M; Buck M
    mBio; 2017 Jan; 8(1):. PubMed ID: 28119474
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Analysis of the role of the type III effector inventory of Pseudomonas syringae pv. phaseolicola 1448a in interaction with the plant.
    Zumaquero A; Macho AP; Rufián JS; Beuzón CR
    J Bacteriol; 2010 Sep; 192(17):4474-88. PubMed ID: 20601478
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Bioinformatics correctly identifies many type III secretion substrates in the plant pathogen Pseudomonas syringae and the biocontrol isolate P. fluorescens SBW25.
    Vinatzer BA; Jelenska J; Greenberg JT
    Mol Plant Microbe Interact; 2005 Aug; 18(8):877-88. PubMed ID: 16134900
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Pseudomonas syringae type III secretion system effectors: repertoires in search of functions.
    Cunnac S; Lindeberg M; Collmer A
    Curr Opin Microbiol; 2009 Feb; 12(1):53-60. PubMed ID: 19168384
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Naturally occurring nonpathogenic isolates of the plant pathogen Pseudomonas syringae lack a type III secretion system and effector gene orthologues.
    Mohr TJ; Liu H; Yan S; Morris CE; Castillo JA; Jelenska J; Vinatzer BA
    J Bacteriol; 2008 Apr; 190(8):2858-70. PubMed ID: 18263729
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The Pseudomonas syringae type III effectors AvrRpm1 and AvrRpt2 promote virulence dependent on the F-box protein COI1.
    Geng X; Shen M; Kim JH; Mackey D
    Plant Cell Rep; 2016 Apr; 35(4):921-32. PubMed ID: 26795143
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Pseudomonas syringae pv. tomato DC3000 Type III Secretion Effector Polymutants Reveal an Interplay between HopAD1 and AvrPtoB.
    Wei HL; Chakravarthy S; Mathieu J; Helmann TC; Stodghill P; Swingle B; Martin GB; Collmer A
    Cell Host Microbe; 2015 Jun; 17(6):752-62. PubMed ID: 26067603
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The Stringent Response Mediated by (p)ppGpp Is Required for Virulence of Pseudomonas syringae pv. tomato and Its Survival on Tomato.
    Chatnaparat T; Li Z; Korban SS; Zhao Y
    Mol Plant Microbe Interact; 2015 Jul; 28(7):776-89. PubMed ID: 25675257
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The majority of the type III effector inventory of Pseudomonas syringae pv. tomato DC3000 can suppress plant immunity.
    Guo M; Tian F; Wamboldt Y; Alfano JR
    Mol Plant Microbe Interact; 2009 Sep; 22(9):1069-80. PubMed ID: 19656042
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.