These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 28677398)

  • 1. Environmental Screening Effects in 2D Materials: Renormalization of the Bandgap, Electronic Structure, and Optical Spectra of Few-Layer Black Phosphorus.
    Qiu DY; da Jornada FH; Louie SG
    Nano Lett; 2017 Aug; 17(8):4706-4712. PubMed ID: 28677398
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Strongly Bound Excitons and Anisotropic Linear Absorption in Monolayer Graphullerene.
    Champagne A; Camarasa-Gómez M; Ricci F; Kronik L; Neaton JB
    Nano Lett; 2024 Jun; 24(23):7033-7039. PubMed ID: 38805193
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Probing excitonic dark states in single-layer tungsten disulphide.
    Ye Z; Cao T; O'Brien K; Zhu H; Yin X; Wang Y; Louie SG; Zhang X
    Nature; 2014 Sep; 513(7517):214-8. PubMed ID: 25162523
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quasiparticle energies and significant exciton effects of monolayered blue arsenic phosphorus conformers.
    Zhao H; Wang Q; Jia B; Han L; Chen W; Hao J; Wu L; Lu P; Guan P
    Phys Chem Chem Phys; 2021 Oct; 23(41):23808-23817. PubMed ID: 34644716
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quasiparticle and Optical Properties of Carrier-Doped Monolayer MoTe
    Champagne A; Haber JB; Pokawanvit S; Qiu DY; Biswas S; Atwater HA; da Jornada FH; Neaton JB
    Nano Lett; 2023 May; 23(10):4274-4281. PubMed ID: 37159934
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor.
    Ugeda MM; Bradley AJ; Shi SF; da Jornada FH; Zhang Y; Qiu DY; Ruan W; Mo SK; Hussain Z; Shen ZX; Wang F; Louie SG; Crommie MF
    Nat Mater; 2014 Dec; 13(12):1091-5. PubMed ID: 25173579
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optoelectronic properties in monolayers of hybridized graphene and hexagonal boron nitride.
    Bernardi M; Palummo M; Grossman JC
    Phys Rev Lett; 2012 Jun; 108(22):226805. PubMed ID: 23003640
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exciton Band Structure in Two-Dimensional Materials.
    Cudazzo P; Sponza L; Giorgetti C; Reining L; Sottile F; Gatti M
    Phys Rev Lett; 2016 Feb; 116(6):066803. PubMed ID: 26919006
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Giant gate-tunable bandgap renormalization and excitonic effects in a 2D semiconductor.
    Qiu Z; Trushin M; Fang H; Verzhbitskiy I; Gao S; Laksono E; Yang M; Lyu P; Li J; Su J; Telychko M; Watanabe K; Taniguchi T; Wu J; Neto AHC; Yang L; Eda G; Adam S; Lu J
    Sci Adv; 2019 Jul; 5(7):eaaw2347. PubMed ID: 31334350
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quasiparticle and optical properties of strained stanene and stanane.
    Lu P; Wu L; Yang C; Liang D; Quhe R; Guan P; Wang S
    Sci Rep; 2017 Jun; 7(1):3912. PubMed ID: 28634387
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Excitons in two-dimensional atomic layer materials from time-dependent density functional theory: mono-layer and bi-layer hexagonal boron nitride and transition-metal dichalcogenides.
    Suzuki Y; Watanabe K
    Phys Chem Chem Phys; 2020 Feb; 22(5):2908-2916. PubMed ID: 31950126
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Excitonic effects on the optical spectra of TiB
    Sharma A; Thakur A; Rangra VS
    J Phys Condens Matter; 2023 Oct; 36(4):. PubMed ID: 37832563
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The impact of hexagonal boron nitride encapsulation on the structural and vibrational properties of few layer black phosphorus.
    Birowska M; Urban J; Baranowski M; Maude DK; Plochocka P; Szwacki NG
    Nanotechnology; 2019 May; 30(19):195201. PubMed ID: 30699401
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quasiparticle electronic structure and optical absorption of diamond nanoparticles from ab initio many-body perturbation theory.
    Yin H; Ma Y; Hao X; Mu J; Liu C; Yi Z
    J Chem Phys; 2014 Jun; 140(21):214315. PubMed ID: 24908016
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly anisotropic and robust excitons in monolayer black phosphorus.
    Wang X; Jones AM; Seyler KL; Tran V; Jia Y; Zhao H; Wang H; Yang L; Xu X; Xia F
    Nat Nanotechnol; 2015 Jun; 10(6):517-21. PubMed ID: 25915195
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In Pursuit of 2D Materials for Maximum Optical Response.
    Gupta S; Shirodkar SN; Kutana A; Yakobson BI
    ACS Nano; 2018 Nov; 12(11):10880-10889. PubMed ID: 30226752
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tuning the Direct and Indirect Excitonic Transitions of
    Segura A; Cuscó R; Attaccalite C; Taniguchi T; Watanabe K; Artús L
    J Phys Chem C Nanomater Interfaces; 2021 Jun; 125(23):12880-12885. PubMed ID: 34603570
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Superbound Excitons in 2D Phosphorene Oxides.
    Lu Y; Zhu X
    J Phys Chem A; 2019 Jan; 123(1):21-25. PubMed ID: 30521340
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Signature of excitonic insulators in phosphorene nanoribbons.
    Felipe Pereira de Oliveira A; Luisa da Rosa A; Cavalheiro Dias A
    J Phys Condens Matter; 2024 May; 36(34):. PubMed ID: 38744299
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of layer-dependent exciton binding energies in few-layer black phosphorus.
    Zhang G; Chaves A; Huang S; Wang F; Xing Q; Low T; Yan H
    Sci Adv; 2018 Mar; 4(3):eaap9977. PubMed ID: 29556530
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.