These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 2867740)

  • 1. Selective and differential medium for detecting Clostridium botulinum.
    Silas JC; Carpenter JA; Hamdy MK; Harrison MA
    Appl Environ Microbiol; 1985 Oct; 50(4):1110-1. PubMed ID: 2867740
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Immunodiffusion method for detection of type A Clostridium botulinum.
    Ferreira JL; Hamdy MK; Zapatka FA; Hebert WO
    Appl Environ Microbiol; 1981 Dec; 42(6):1057-61. PubMed ID: 6797350
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition of Clostridium botulinum by strains of Clostridium perfringens isolated from soil.
    Smith LD
    Appl Microbiol; 1975 Aug; 30(2):319-23. PubMed ID: 169734
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selective medium for isolation of Clostridium botulinum from human feces.
    Dezfulian M; McCroskey LM; Hatheway CL; Dowell VR
    J Clin Microbiol; 1981 Mar; 13(3):526-31. PubMed ID: 7016901
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Clostridium perfringens. I. Sporulation in a biphasic glucose-ion-exchange resin medium.
    Clifford WJ; Anellis A
    Appl Microbiol; 1971 Nov; 22(5):856-61. PubMed ID: 4332043
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of Clostridium botulinum, Clostridium argentinense, and related organisms by cellular fatty acid analysis.
    Ghanem FM; Ridpath AC; Moore WE; Moore LV
    J Clin Microbiol; 1991 Jun; 29(6):1114-24. PubMed ID: 1864927
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a combined selection and enrichment PCR procedure for Clostridium botulinum Types B, E, and F and its use to determine prevalence in fecal samples from slaughtered pigs.
    Dahlenborg M; Borch E; Rådström P
    Appl Environ Microbiol; 2001 Oct; 67(10):4781-8. PubMed ID: 11571185
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antigenic relationships among the proteolytic and nonproteolytic strains of Clostridium botulinum.
    Solomon HM; Lynt RK; Kautter DA; Lilly T
    Appl Microbiol; 1971 Feb; 21(2):295-9. PubMed ID: 4927406
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Use of a synthetic medium for cultivating pathogenic anaerobes].
    Ivanova LG; Sergeeva TI
    Zh Mikrobiol Epidemiol Immunobiol; 1975 Mar; 0(3):40-3. PubMed ID: 164749
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Detection of toxin-producing pathogenic bacterial strains by polymerase chain reaction].
    Vertiev IuV; Liaĭman ME; Ugriumova GA; Sergeeva TI
    Klin Lab Diagn; 2000 Aug; (8):46-50. PubMed ID: 11031435
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Toxin production by Clostridium botulinum in grass.
    Notermans S; Kozaki S; van Schothorst M
    Appl Environ Microbiol; 1979 Nov; 38(5):767-71. PubMed ID: 44443
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Minimal growth temperature, sodium chloride tolerance, pH sensitivity, and toxin production of marine and terrestrial strains of Clostridium botulinum type C.
    Segner WP; Schmidt CF; Boltz JK
    Appl Microbiol; 1971 Dec; 22(6):1025-9. PubMed ID: 4944801
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Growth of non-toxigenic Clostridium botulinum mutant LNT01 in cooked beef: One-step kinetic analysis and comparison with C. sporogenes and C. perfringens.
    Huang L
    Food Res Int; 2018 May; 107():248-256. PubMed ID: 29580482
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Competitive inhibition between different Clostridium botulinum types and strains.
    Eklund MW; Poysky FT; Peterson ME; Paranjpye RN; Pelroy GA
    J Food Prot; 2004 Dec; 67(12):2682-7. PubMed ID: 15633672
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Agar concentration in counting Clostridium colonies.
    Eller C; Rogers L; Wynne ES
    Appl Microbiol; 1967 Jan; 15(1):55-7. PubMed ID: 4291671
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dependence of Clostridium botulinum gas and protease production on culture conditions.
    Montville TJ
    Appl Environ Microbiol; 1983 Feb; 45(2):571-5. PubMed ID: 6338828
    [TBL] [Abstract][Full Text] [Related]  

  • 17.
    Maikanov B; Mustafina R; Auteleyeva L; Wiśniewski J; Anusz K; Grenda T; Kwiatek K; Goldsztejn M; Grabczak M
    Toxins (Basel); 2019 Aug; 11(8):. PubMed ID: 31412583
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a selective medium for the isolation of Clostridium sporogenes and related organisms.
    Fryer TF; Mead GC
    J Appl Bacteriol; 1979 Dec; 47(3):425-31. PubMed ID: 120359
    [No Abstract]   [Full Text] [Related]  

  • 19. Collaborative study of a method for the detection of Clostridium botulinum and its toxins in foods.
    Kautter DA; Solomon HM
    J Assoc Off Anal Chem; 1977 May; 60(3):541-5. PubMed ID: 323214
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development and application of a new method for specific and sensitive enumeration of spores of nonproteolytic Clostridium botulinum types B, E, and F in foods and food materials.
    Peck MW; Plowman J; Aldus CF; Wyatt GM; Izurieta WP; Stringer SC; Barker GC
    Appl Environ Microbiol; 2010 Oct; 76(19):6607-14. PubMed ID: 20709854
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.