BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 2867765)

  • 1. Cysteine residues at the active site of glutamine synthetase from spinach leaves.
    Ericson MC; Brunn SA
    Biochem Biophys Res Commun; 1985 Dec; 133(2):527-31. PubMed ID: 2867765
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Mechanism of inhibition of pea chloroplast glutamine synthetase by methionine sulfoximine].
    Akent'eva NP; Evstigneeva ZG; Pushkin AV; Solov'eva NA; Kretovich VL
    Biokhimiia; 1983 Jul; 48(7):1209-13. PubMed ID: 6137246
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The modification of sulfhydryl groups of glutamine synthetase from Bacillus stearothermophilus with 5, 5'-dithiobis(2-nitrobenzoic acid).
    Hachimori A; Takeda A; Nagaoka T; Suzuki H; Nosoh Y; Samejima T
    J Biochem; 1975 Dec; 78(6):1235-40. PubMed ID: 5420
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Kinetic characteristics of glutamine synthetase from the chloroplasts of pea leaves].
    Pushkin AV; Solov'eva NA; Akent'eva NP; Evstigneeva ZG; Kretovich VL
    Biokhimiia; 1983 Aug; 48(8):1300-4. PubMed ID: 6138104
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence for a reactive cysteine at the nucleotide binding site of spinach ribulose-5-phosphate kinase.
    Omnaas J; Porter MA; Hartman FC
    Arch Biochem Biophys; 1985 Feb; 236(2):646-53. PubMed ID: 2982321
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Clostridium pasteurianum glutamine synthetase mechanism. Evidence for active site tyrosine residues.
    Krishnan IS; Dua RD
    FEBS Lett; 1985 Jun; 185(2):267-71. PubMed ID: 2860014
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Secondary structure and functional groups of the active center of glutamine synthetase of pea chloroplasts].
    Akent'eva NP; Solov'eva NA; Pushkin AV; Evstigneeva ZG; Kretovich VL
    Biokhimiia; 1983 May; 48(5):833-6. PubMed ID: 6135456
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Presence of SH-groups and histidine in the active site of Chlorella glutamine synthetase].
    Rasulov AS; Evstigneeva ZG; Kretovich VL
    Biokhimiia; 1978 Jun; 43(6):1090-6. PubMed ID: 27248
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Argininosuccinate synthetase: essential role of cysteine and arginine residues in relation to structure and mechanism of ATP activation.
    Kumar S; Lennane J; Ratner S
    Proc Natl Acad Sci U S A; 1985 Oct; 82(20):6745-9. PubMed ID: 3863125
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Independent bindings of Mn2+ and Mg2+ to the active site of B. cereus glutamine synthetase.
    Nakano Y; Kimura K
    Biochem Biophys Res Commun; 1987 Jan; 142(2):475-82. PubMed ID: 2880587
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Methionine sulfoximine and phosphinothricin--glutamine synthetase inhibitors and activators and their herbicidal activity (A review)].
    Evstigneeva ZG; Solov'eva NA; Sidel'nikova LI
    Prikl Biokhim Mikrobiol; 2003; 39(6):613-8. PubMed ID: 14714472
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of cysteine residues on the activity of arginyl-tRNA synthetase from Escherichia coli.
    Liu M; Huang Y; Wu J; Wang E; Wang Y
    Biochemistry; 1999 Aug; 38(34):11006-11. PubMed ID: 10460155
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Essential cysteines in 3-deoxy-D-manno-octulosonic acid 8-phosphate synthase from Escherichia coli: analysis by chemical modification and site-directed mutagenesis.
    Salleh HM; Patel MA; Woodard RW
    Biochemistry; 1996 Jul; 35(27):8942-7. PubMed ID: 8688430
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The crystal structure of phosphinothricin in the active site of glutamine synthetase illuminates the mechanism of enzymatic inhibition.
    Gill HS; Eisenberg D
    Biochemistry; 2001 Feb; 40(7):1903-12. PubMed ID: 11329256
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphinothricin analogues as inhibitors of plant glutamine synthetases.
    Forlani G; Obojska A; Berlicki Ł; Kafarski P
    J Agric Food Chem; 2006 Feb; 54(3):796-802. PubMed ID: 16448185
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition of the functional interaction between fatty acid synthetase and thioesterase II by modification of a single cysteine thiol on the thioesterase.
    Witkowski A; Smith S
    Arch Biochem Biophys; 1985 Dec; 243(2):420-6. PubMed ID: 4083894
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sulfhydryl chemistry of Salmonella typhimurium phosphoribosylpyrophosphate synthetase: identification of two classes of cysteinyl residues.
    Harlow KW; Switzer RL
    Arch Biochem Biophys; 1990 Feb; 276(2):466-72. PubMed ID: 2154950
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of the reactive cysteinyl residue and ATP binding site in Bacillus cereus glutamine synthetase by chemical modification.
    Nakano Y; Itoh M; Tanaka E; Kimura K
    J Biochem; 1990 Feb; 107(2):180-3. PubMed ID: 1972941
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spinach leaf ribulose-5-phosphate kinase: examination of sulfhydryls by chemical modification and spin-labeling.
    Krieger TJ; Miziorko HM
    Arch Biochem Biophys; 1987 Jul; 256(1):362-71. PubMed ID: 3038027
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence for the presence of essential histidine and cysteine residues in platelet cGMP-inhibited phosphodiesterase.
    Ghazaleh FA; Omburo GA; Colman RW
    Biochem J; 1996 Jul; 317 ( Pt 2)(Pt 2):495-501. PubMed ID: 8713077
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.