BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 2867813)

  • 1. Locus coeruleus norepinephrine-containing neurons: effects produced by acute and subchronic treatment with antipsychotic drugs and amphetamine.
    Ramirez OA; Wang RY
    Brain Res; 1986 Jan; 362(1):165-70. PubMed ID: 2867813
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Activation of noradrenergic locus coeruleus neurons by clozapine and haloperidol: involvement of glutamatergic mechanisms.
    Nilsson LK; Schwieler L; Engberg G; Linderholm KR; Erhardt S
    Int J Neuropsychopharmacol; 2005 Sep; 8(3):329-39. PubMed ID: 15737250
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Haloperidol and clozapine: differential effects on the sensitivity of caudate-putamen neurons to dopamine agonists and cholecystokinin following one month continuous treatment.
    Hu XT; Wang RY
    Brain Res; 1989 May; 486(2):325-33. PubMed ID: 2786442
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential effects of acute clozapine and haloperidol on the activity of ventral tegmental (A10) and nigrostriatal (A9) dopamine neurons.
    Hand TH; Hu XT; Wang RY
    Brain Res; 1987 Jul; 415(2):257-69. PubMed ID: 3607497
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of clozapine on the activity of central dopaminergic and noradrenergic neurons.
    Souto M; Monti JM; Altier H
    Pharmacol Biochem Behav; 1979 Jan; 10(1):5-9. PubMed ID: 441095
    [TBL] [Abstract][Full Text] [Related]  

  • 6. One year treatment with haloperidol or clozapine fails to alter neostriatal D1- and D2-dopamine receptor sensitivity in the rat.
    Ashby CR; Hitzemann R; Rubinstein JE; Wang RY
    Brain Res; 1989 Jul; 493(1):194-7. PubMed ID: 2570618
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Possible mechanisms by which repeated clozapine administration differentially affects the activity of two subpopulations of midbrain dopamine neurons.
    Chiodo LA; Bunney BS
    J Neurosci; 1985 Sep; 5(9):2539-44. PubMed ID: 2863337
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Central levels of noradrenaline, 3-methoxy-4-hydroxyphenylethyleneglycol and cyclic AMP in the rat after activation of locus coeruleus neurons: influence of single and repeated neuroleptic treatment.
    Adèr JP; Sebens JB; Korf J
    Psychopharmacology (Berl); 1980; 70(3):239-45. PubMed ID: 6108589
    [No Abstract]   [Full Text] [Related]  

  • 9. Potency of antipsychotics in reversing the effects of a hallucinogenic drug on locus coeruleus neurons correlates with 5-HT2 binding affinity.
    Rasmussen K; Aghajanian GK
    Neuropsychopharmacology; 1988 May; 1(2):101-7. PubMed ID: 2908015
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of antipsychotic drugs on 5-HT2 receptors in the medial prefrontal cortex: microiontophoretic studies.
    Ashby CR; Wang RY
    Brain Res; 1990 Jan; 506(2):346-8. PubMed ID: 1967969
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chronic high-dose haloperidol has qualitatively similar effects to risperidone and clozapine on immediate-early gene and tyrosine hydroxylase expression in the rat locus coeruleus but not medial prefrontal cortex.
    Verma V; Lim EP; Han SP; Nagarajah R; Dawe GS
    Neurosci Res; 2007 Jan; 57(1):17-28. PubMed ID: 17028028
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of typical and atypical antipsychotic drugs on the stimulation of phosphoinositide hydrolysis produced by the 5-HT3 receptor agonist 2-methyl-serotonin.
    Edwards E; Ashby CR; Wang RY
    Brain Res; 1991 Apr; 545(1-2):276-8. PubMed ID: 1677603
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential sensitivity to amphetamine following long-term treatment with clozapine or haloperidol.
    Rebec GV; Peirson EE; McPherson FA; Brugge K
    Psychopharmacology (Berl); 1982; 77(4):360-6. PubMed ID: 6813898
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrophysiological evidence for locus coeruleus norepinephrine autoreceptor subsensitivity following subchronic administration of D-amphetamine.
    Ramirez OA; Wang RY
    Brain Res; 1986 Oct; 385(2):415-9. PubMed ID: 3022876
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Seroquel: electrophysiological profile of a potential atypical antipsychotic.
    Goldstein JM; Litwin LC; Sutton EB; Malick JB
    Psychopharmacology (Berl); 1993; 112(2-3):293-8. PubMed ID: 7871033
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of acute and chronic clozapine and haloperidol on in vitro release of acetylcholine and dopamine from striatum and nucleus accumbens.
    Compton DR; Johnson KM
    J Pharmacol Exp Ther; 1989 Feb; 248(2):521-30. PubMed ID: 2918468
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of acute and chronic clozapine on D-amphetamine-induced disruption of auditory gating in the rat.
    Joy B; McMahon RP; Shepard PD
    Psychopharmacology (Berl); 2004 Jul; 174(2):274-82. PubMed ID: 14726994
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selective inhibition of mesolimbic dopamine release following chronic administration of clozapine: involvement of alpha 1-noradrenergic receptors demonstrated by in vivo voltammetry.
    Lane RF; Blaha CD; Rivet JM
    Brain Res; 1988 Sep; 460(2):398-401. PubMed ID: 2852047
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of ICI 169,369, a selective serotonin2 antagonist, in electrophysiological tests predictive of antipsychotic activity.
    Goldstein JM; Litwin LC; Sutton EB; Malick JB
    J Pharmacol Exp Ther; 1989 Jun; 249(3):673-80. PubMed ID: 2567348
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Amphetamine's effects on terminal excitability of noradrenergic locus coeruleus neurons are impulse-dependent at low but not high doses.
    Ryan LJ; Tepper JM; Young SJ; Groves PM
    Brain Res; 1985 Aug; 341(1):155-63. PubMed ID: 4041784
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.