BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 2867817)

  • 41. Localization and possible function of the glutamate transporter, EAAC1, in the rat retina.
    Wiessner M; Fletcher EL; Fischer F; Rauen T
    Cell Tissue Res; 2002 Oct; 310(1):31-40. PubMed ID: 12242481
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Evidence that aspartate aminotransferase activity and ketodicarboxylate carrier function are essential for biosynthesis of transmitter glutamate.
    Palaiologos G; Hertz L; Schousboe A
    J Neurochem; 1988 Jul; 51(1):317-20. PubMed ID: 2898006
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Immunocytochemical localizations of cytosolic and mitochondrial glutamic oxaloacetic transaminase isozymes in rat primary sensory neurons as a marker for the glutamate neuronal system.
    Inagaki N; Kamisaki Y; Kiyama H; Horio Y; Tohyama M; Wada H
    Brain Res; 1987 Jan; 402(1):197-200. PubMed ID: 2881599
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Functional classification of neurons in the mouse lateral cerebellar nuclei.
    Uusisaari M; Knöpfel T
    Cerebellum; 2011 Dec; 10(4):637-46. PubMed ID: 21116763
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Glutamate immunoreactivity in rat cerebral cortex is reversibly abolished by 6-diazo-5-oxo-L-norleucine (DON), an inhibitor of phosphate-activated glutaminase.
    Conti F; Minelli A
    J Histochem Cytochem; 1994 Jun; 42(6):717-26. PubMed ID: 7910617
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A unified assay for six enzymes of glutamate metabolism.
    Dinwoodie RC; Boeker EA
    Anal Biochem; 1979 Jul; 96(1):24-33. PubMed ID: 386832
    [No Abstract]   [Full Text] [Related]  

  • 47. Localization of elevated glutaminase immunoreactivity in small DRG neurons.
    Cangro CB; Sweetnam PM; Wrathall JR; Haser WB; Curthoys NP; Neale JH
    Brain Res; 1985 Jun; 336(1):158-61. PubMed ID: 3891015
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Postembedding immunogold labelling reveals subcellular localization and pathway-specific enrichment of phosphate activated glutaminase in rat cerebellum.
    Laake JH; Takumi Y; Eidet J; Torgner IA; Roberg B; Kvamme E; Ottersen OP
    Neuroscience; 1999; 88(4):1137-51. PubMed ID: 10336125
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Uptake, release and metabolism of glutamate and aspartate by rat cerebellar subcellular preparations.
    Rao VL; Murthy CR
    Biochem Mol Biol Int; 1993 Mar; 29(4):711-7. PubMed ID: 8098241
    [TBL] [Abstract][Full Text] [Related]  

  • 50. GABAergic synaptic communication in the GABAergic and non-GABAergic cells in the deep cerebellar nuclei.
    Uusisaari M; Knöpfel T
    Neuroscience; 2008 Oct; 156(3):537-49. PubMed ID: 18755250
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Implications for altered glutamate and GABA metabolism in the dorsolateral prefrontal cortex of aged schizophrenic patients.
    Gluck MR; Thomas RG; Davis KL; Haroutunian V
    Am J Psychiatry; 2002 Jul; 159(7):1165-73. PubMed ID: 12091195
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Production, characterization, and immunohistochemical application of monoclonal antibodies to glutaminase purified from rat brain.
    Kaneko T; Urade Y; Watanabe Y; Mizuno N
    J Neurosci; 1987 Jan; 7(1):302-9. PubMed ID: 2879897
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Glutaminase and aspartate aminotransferase decrease in the cochlear nucleus after lesion of the auditory nerve.
    Wenthold RJ
    Brain Res; 1980 May; 190(1):293-7. PubMed ID: 6103731
    [No Abstract]   [Full Text] [Related]  

  • 54. Ontogenetic development of glutamate metabolizing enzymes in cultured cerebellar granule cells and in cerebellum in vivo.
    Drejer J; Larsson OM; Kvamme E; Svenneby G; Hertz L; Schousboe A
    Neurochem Res; 1985 Jan; 10(1):49-62. PubMed ID: 2858827
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Glutaminase inhibition and the release of neurotransmitter glutamate from synaptosomes.
    Bradford HF; Ward HK; Foley P
    Brain Res; 1989 Jan; 476(1):29-34. PubMed ID: 2563333
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Application of principles of steady-state kinetics to the estimation of gamma-aminobutyric acid turnover rate in nuclei of rat brain.
    Bertilsson L; Mao CC; Costa E
    J Pharmacol Exp Ther; 1977 Feb; 200(2):277-84. PubMed ID: 839439
    [TBL] [Abstract][Full Text] [Related]  

  • 57. An electron microscopic, immunogold analysis of glutamate and glutamine in terminals of rat spinocerebellar fibers.
    Ji ZQ; Aas JE; Laake J; Walberg F; Ottersen OP
    J Comp Neurol; 1991 May; 307(2):296-310. PubMed ID: 1677366
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Hormonal modulation of amino acid neurotransmitter metabolism in the arcuate nucleus of the adult female rat: a novel action of estradiol.
    Blutstein T; Baab PJ; Zielke HR; Mong JA
    Endocrinology; 2009 Jul; 150(7):3237-44. PubMed ID: 19299450
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Immunocytochemical and autoradiographic methods to demonstrate the coexistence of neuroactive substance: cerebellar Purkinje cells have glutamic acid decarboxylase, cysteine sulfinic acid decarboxylase, and motilin immunoreactivity.
    Chan-Palay V
    Acta Morphol Hung; 1983; 31(1-3):193-212. PubMed ID: 6312771
    [TBL] [Abstract][Full Text] [Related]  

  • 60. An ultrastructural description of glutamate-like immunoreactivity in the rat cerebellar cortex.
    Clements JR; Monaghan PL; Beitz AJ
    Brain Res; 1987 Sep; 421(1-2):343-8. PubMed ID: 2891403
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.