BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

322 related articles for article (PubMed ID: 28678209)

  • 1. Nanofiber Scaffolds as Drug Delivery Systems to Bridge Spinal Cord Injury.
    Faccendini A; Vigani B; Rossi S; Sandri G; Bonferoni MC; Caramella CM; Ferrari F
    Pharmaceuticals (Basel); 2017 Jul; 10(3):. PubMed ID: 28678209
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent Advances in the Regenerative Approaches for Traumatic Spinal Cord Injury: Materials Perspective.
    Abbas WA; Ibrahim ME; El-Naggar M; Abass WA; Abdullah IH; Awad BI; Allam NK
    ACS Biomater Sci Eng; 2020 Dec; 6(12):6490-6509. PubMed ID: 33320628
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polycaprolactone/polysialic acid hybrid, multifunctional nanofiber scaffolds for treatment of spinal cord injury.
    Zhang S; Wang XJ; Li WS; Xu XL; Hu JB; Kang XQ; Qi J; Ying XY; You J; Du YZ
    Acta Biomater; 2018 Sep; 77():15-27. PubMed ID: 30126591
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spinal Cord Injury: Pathophysiology, Multimolecular Interactions, and Underlying Recovery Mechanisms.
    Anjum A; Yazid MD; Fauzi Daud M; Idris J; Ng AMH; Selvi Naicker A; Ismail OHR; Athi Kumar RK; Lokanathan Y
    Int J Mol Sci; 2020 Oct; 21(20):. PubMed ID: 33066029
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design and criteria of electrospun fibrous scaffolds for the treatment of spinal cord injury.
    Vigani B; Rossi S; Sandri G; Bonferoni MC; Ferrari F
    Neural Regen Res; 2017 Nov; 12(11):1786-1790. PubMed ID: 29239316
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pathophysiology and Therapeutic Approaches for Spinal Cord Injury.
    Lima R; Monteiro A; Salgado AJ; Monteiro S; Silva NA
    Int J Mol Sci; 2022 Nov; 23(22):. PubMed ID: 36430308
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PHBV/PLA/Col-Based Nanofibrous Scaffolds Promote Recovery of Locomotor Function by Decreasing Reactive Astrogliosis in a Hemisection Spinal Cord Injury Rat Model.
    Zhao T; Jing Y; Zhou X; Wang J; Huang X; Gao L; Zhu Y; Wang L; Gou Z; Liang C; Xu K; Li F; Chen Q
    J Biomed Nanotechnol; 2018 Nov; 14(11):1921-1933. PubMed ID: 30165928
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Restoring electrical connection using a conductive biomaterial provides a new therapeutic strategy for rats with spinal cord injury.
    Shu B; Sun X; Liu R; Jiang F; Yu H; Xu N; An Y
    Neurosci Lett; 2019 Jan; 692():33-40. PubMed ID: 30367954
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Drug delivery, cell-based therapies, and tissue engineering approaches for spinal cord injury.
    Kabu S; Gao Y; Kwon BK; Labhasetwar V
    J Control Release; 2015 Dec; 219():141-154. PubMed ID: 26343846
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanofiber scaffolds for treatment of spinal cord injury.
    Guo JS; Qian CH; Ling EA; Zeng YS
    Curr Med Chem; 2014; 21(37):4282-9. PubMed ID: 25139655
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Promotion of spinal cord axon regeneration by 3D nanofibrous core-sheath scaffolds.
    Zamani F; Amani-Tehran M; Latifi M; Shokrgozar MA; Zaminy A
    J Biomed Mater Res A; 2014 Feb; 102(2):506-13. PubMed ID: 23533050
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Scaffold-facilitated locomotor improvement post complete spinal cord injury: Motor axon regeneration versus endogenous neuronal relay formation.
    Li X; Liu D; Xiao Z; Zhao Y; Han S; Chen B; Dai J
    Biomaterials; 2019 Mar; 197():20-31. PubMed ID: 30639547
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acute spinal cord injury: A review of pathophysiology and potential of non-steroidal anti-inflammatory drugs for pharmacological intervention.
    Hayta E; Elden H
    J Chem Neuroanat; 2018 Jan; 87():25-31. PubMed ID: 28803968
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polymer-Based Scaffold Strategies for Spinal Cord Repair and Regeneration.
    Qu W; Chen B; Shu W; Tian H; Ou X; Zhang X; Wang Y; Wu M
    Front Bioeng Biotechnol; 2020; 8():590549. PubMed ID: 33117788
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intervention strategies to enhance anatomical plasticity and recovery of function after spinal cord injury.
    Bregman BS; Diener PS; McAtee M; Dai HN; James C
    Adv Neurol; 1997; 72():257-75. PubMed ID: 8993704
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Harpagide inhibits neuronal apoptosis and promotes axonal regeneration after spinal cord injury in rats by activating the Wnt/β-catenin signaling pathway.
    Rong Y; Liu W; Zhou Z; Gong F; Bai J; Fan J; Li L; Luo Y; Zhou Z; Cai W
    Brain Res Bull; 2019 May; 148():91-99. PubMed ID: 30940474
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Convection enhanced drug delivery of BDNF through a microcannula in a rodent model to strengthen connectivity of a peripheral motor nerve bridge model to bypass spinal cord injury.
    Martin Bauknight W; Chakrabarty S; Hwang BY; Malone HR; Joshi S; Bruce JN; Sander Connolly E; Winfree CJ; Cunningham MG; Martin JH; Haque R
    J Clin Neurosci; 2012 Apr; 19(4):563-9. PubMed ID: 22266141
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regeneration of Spinal Cord Connectivity Through Stem Cell Transplantation and Biomaterial Scaffolds.
    Katoh H; Yokota K; Fehlings MG
    Front Cell Neurosci; 2019; 13():248. PubMed ID: 31244609
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sustained release of neurotrophin-3 and chondroitinase ABC from electrospun collagen nanofiber scaffold for spinal cord injury repair.
    Liu T; Xu J; Chan BP; Chew SY
    J Biomed Mater Res A; 2012 Jan; 100(1):236-42. PubMed ID: 22042649
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cetuximab and Taxol co-modified collagen scaffolds show combination effects for the repair of acute spinal cord injury.
    Fan C; Li X; Zhao Y; Xiao Z; Xue W; Sun J; Li X; Zhuang Y; Chen Y; Dai J
    Biomater Sci; 2018 Jun; 6(7):1723-1734. PubMed ID: 29845137
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.