These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 28678233)

  • 21. Approaches for enhancement of N₂ fixation efficiency of chickpea (Cicer arietinum L.) under limiting nitrogen conditions.
    Esfahani MN; Sulieman S; Schulze J; Yamaguchi-Shinozaki K; Shinozaki K; Tran LS
    Plant Biotechnol J; 2014 Apr; 12(3):387-97. PubMed ID: 24267445
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Glutamine synthetase I-deficiency in Mesorhizobium loti differentially affects nodule development and activity in Lotus japonicus.
    Chungopast S; Thapanapongworakul P; Matsuura H; Van Dao T; Asahi T; Tada K; Tajima S; Nomura M
    J Plant Physiol; 2014 Mar; 171(5):104-8. PubMed ID: 24484964
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enhanced nodulation and nitrogen fixation in the abscisic acid low-sensitive mutant enhanced nitrogen fixation1 of Lotus japonicus.
    Tominaga A; Nagata M; Futsuki K; Abe H; Uchiumi T; Abe M; Kucho K; Hashiguchi M; Akashi R; Hirsch AM; Arima S; Suzuki A
    Plant Physiol; 2009 Dec; 151(4):1965-76. PubMed ID: 19776164
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Methionine Sulfoxide Reductase B Is Required for the Establishment of Astragalus sinicus-Mesorhizobium Symbiosis.
    Si Z; Guan N; Zhou Y; Mei L; Li Y; Li Y
    Plant Cell Physiol; 2020 Sep; 61(9):1631-1645. PubMed ID: 32618998
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A Novel Rhizobium sp. Chiba-1 Strain Exhibits a Host Range for Nodule Symbiosis in Lotus Species.
    Chiba Y; Sasaki M; Masuda S; Shibata A; Shirasu K; Kawaharada Y
    Microbes Environ; 2023; 38(4):. PubMed ID: 38044128
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Microbiome profiling reveals that Pseudomonas antagonises parasitic nodule colonisation of cheater rhizobia in Lotus.
    Crosbie DB; Mahmoudi M; Radl V; Brachmann A; Schloter M; Kemen E; Marín M
    New Phytol; 2022 Apr; 234(1):242-255. PubMed ID: 35067935
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dynamics of Ethylene Production in Response to Compatible Nod Factor.
    Reid D; Liu H; Kelly S; Kawaharada Y; Mun T; Andersen SU; Desbrosses G; Stougaard J
    Plant Physiol; 2018 Feb; 176(2):1764-1772. PubMed ID: 29187569
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A novel ankyrin-repeat membrane protein, IGN1, is required for persistence of nitrogen-fixing symbiosis in root nodules of Lotus japonicus.
    Kumagai H; Hakoyama T; Umehara Y; Sato S; Kaneko T; Tabata S; Kouchi H
    Plant Physiol; 2007 Mar; 143(3):1293-305. PubMed ID: 17277093
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A Nod factor- and type III secretion system-dependent manner for Robinia pseudoacacia to establish symbiosis with Mesorhizobium amorphae CCNWGS0123.
    Huo H; Wang X; Liu Y; Chen J; Wei G
    Tree Physiol; 2021 May; 41(5):817-835. PubMed ID: 33219377
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cessation of photosynthesis in Lotus japonicus leaves leads to reprogramming of nodule metabolism.
    Tsikou D; Kalloniati C; Fotelli MN; Nikolopoulos D; Katinakis P; Udvardi MK; Rennenberg H; Flemetakis E
    J Exp Bot; 2013 Mar; 64(5):1317-32. PubMed ID: 23404899
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Legume nodulation.
    Downie JA
    Curr Biol; 2014 Mar; 24(5):R184-90. PubMed ID: 24602880
    [No Abstract]   [Full Text] [Related]  

  • 32. Two distinct EIN2 genes cooperatively regulate ethylene signaling in Lotus japonicus.
    Miyata K; Kawaguchi M; Nakagawa T
    Plant Cell Physiol; 2013 Sep; 54(9):1469-77. PubMed ID: 23825220
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dysregulation of host-control causes interspecific conflict over host investment into symbiotic organs.
    Quides KW; Salaheldine F; Jariwala R; Sachs JL
    Evolution; 2021 May; 75(5):1189-1200. PubMed ID: 33521949
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Systemic control of legume susceptibility to rhizobial infection by a mobile microRNA.
    Tsikou D; Yan Z; Holt DB; Abel NB; Reid DE; Madsen LH; Bhasin H; Sexauer M; Stougaard J; Markmann K
    Science; 2018 Oct; 362(6411):233-236. PubMed ID: 30166437
    [TBL] [Abstract][Full Text] [Related]  

  • 35. crinkle, a novel symbiotic mutant that affects the infection thread growth and alters the root hair, trichome, and seed development in Lotus japonicus.
    Tansengco ML; Hayashi M; Kawaguchi M; Imaizumi-Anraku H; Murooka Y
    Plant Physiol; 2003 Mar; 131(3):1054-63. PubMed ID: 12644658
    [TBL] [Abstract][Full Text] [Related]  

  • 36. LjnsRING, a novel RING finger protein, is required for symbiotic interactions between Mesorhizobium loti and Lotus japonicus.
    Shimomura K; Nomura M; Tajima S; Kouchi H
    Plant Cell Physiol; 2006 Nov; 47(11):1572-81. PubMed ID: 17056617
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Microtubule array formation during root hair infection thread initiation and elongation in the Mesorhizobium-Lotus symbiosis.
    Perrine-Walker FM; Lartaud M; Kouchi H; Ridge RW
    Protoplasma; 2014 Sep; 251(5):1099-111. PubMed ID: 24488109
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Stably Transformed Lotus japonicus Plants Overexpressing Phytoglobin LjGlb1-1 Show Decreased Nitric Oxide Levels in Roots and Nodules as Well as Delayed Nodule Senescence.
    Fukudome M; Watanabe E; Osuki KI; Imaizumi R; Aoki T; Becana M; Uchiumi T
    Plant Cell Physiol; 2019 Apr; 60(4):816-825. PubMed ID: 30597068
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Disclosure of the differences of Mesorhizobium loti under the free-living and symbiotic conditions by comparative proteome analysis without bacteroid isolation.
    Tatsukami Y; Nambu M; Morisaka H; Kuroda K; Ueda M
    BMC Microbiol; 2013 Jul; 13():180. PubMed ID: 23898917
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Lotus japonicus E3 ligase interacts with the Nod Factor Receptor 5 and positively regulates nodulation.
    Tsikou D; Ramirez EE; Psarrakou IS; Wong JE; Jensen DB; Isono E; Radutoiu S; Papadopoulou KK
    BMC Plant Biol; 2018 Oct; 18(1):217. PubMed ID: 30285618
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.