BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 28678235)

  • 1. Graphene dispersions in alkanes: toward fast drying conducting inks.
    Al Shboul A; Trudeau C; Cloutier S; Siaj M; Claverie JP
    Nanoscale; 2017 Jul; 9(28):9893-9901. PubMed ID: 28678235
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Graphene inks for printed flexible electronics: Graphene dispersions, ink formulations, printing techniques and applications.
    Tran TS; Dutta NK; Choudhury NR
    Adv Colloid Interface Sci; 2018 Nov; 261():41-61. PubMed ID: 30318342
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inkjet printing of graphene.
    Arapov K; Abbel R; de With G; Friedrich H
    Faraday Discuss; 2014; 173():323-36. PubMed ID: 25466243
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly conductive graphene/carbon black screen printing inks for flexible electronics.
    Liu L; Shen Z; Zhang X; Ma H
    J Colloid Interface Sci; 2021 Jan; 582(Pt A):12-21. PubMed ID: 32814220
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Graphene Inks Printed by Aerosol Jet for Sensing Applications: The Role of Dispersant on the Inks' Formulation and Performance.
    Al Shboul A; Ketabi M; Skaf D; Nyayachavadi A; Lai Fak Yu T; Rautureau T; Rondeau-Gagné S; Izquierdo R
    Sensors (Basel); 2023 Aug; 23(16):. PubMed ID: 37631688
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid and Versatile Photonic Annealing of Graphene Inks for Flexible Printed Electronics.
    Secor EB; Ahn BY; Gao TZ; Lewis JA; Hersam MC
    Adv Mater; 2015 Nov; 27(42):6683-8. PubMed ID: 26422363
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conductive Inks Based on Melamine Intercalated Graphene Nanosheets for Inkjet Printed Flexible Electronics.
    Kralj M; Krivačić S; Ivanišević I; Zubak M; Supina A; Marciuš M; Halasz I; Kassal P
    Nanomaterials (Basel); 2022 Aug; 12(17):. PubMed ID: 36079974
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfluidization of Graphite and Formulation of Graphene-Based Conductive Inks.
    Karagiannidis PG; Hodge SA; Lombardi L; Tomarchio F; Decorde N; Milana S; Goykhman I; Su Y; Mesite SV; Johnstone DN; Leary RK; Midgley PA; Pugno NM; Torrisi F; Ferrari AC
    ACS Nano; 2017 Mar; 11(3):2742-2755. PubMed ID: 28102670
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Poly(methyl methacrylate)-Assisted Exfoliation of Graphite and Its Use in Acrylonitrile-Butadiene-Styrene Composites.
    Gentiluomo S; Thorat SB; Del Río Castillo AE; Toth PS; Panda JK; Pellegrini V; Bonaccorso F
    Chemistry; 2020 May; 26(29):6715-6725. PubMed ID: 32216144
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient exfoliation of UV-curable, high-quality graphene from graphite in common low-boiling-point organic solvents with a designer hyperbranched polyethylene copolymer and their applications in electrothermal heaters.
    Hu T; Ye H; Luo Z; Ma J; Zhang B; Zhang X; Song J; Wang Q; Xu L
    J Colloid Interface Sci; 2020 Jun; 569():114-127. PubMed ID: 32105899
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Consecutive Ink Writing of Conducting Polymer and Graphene Composite Electrodes for Foldable Electronics-Related Applications.
    Lee H; Kim Y; Kim J; Moon SY; Lee JU
    Polymers (Basel); 2022 Dec; 14(23):. PubMed ID: 36501688
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Graphene-Ag nanohexagonal platelets-based ink with high electrical properties at low sintering temperatures.
    Liu P; Ma J; Deng S; Zeng K; Deng D; Xie W; Lu A
    Nanotechnology; 2016 Sep; 27(38):385603. PubMed ID: 27518607
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interface-exfoliated graphene-based conductive screen-printing inks: low-loading, low-cost, and additive-free.
    Chen F; Varghese D; McDermott ST; George I; Geng L; Adamson DH
    Sci Rep; 2020 Oct; 10(1):18047. PubMed ID: 33093555
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polymer Surface Engineering for Efficient Printing of Highly Conductive Metal Nanoparticle Inks.
    Agina EV; Sizov AS; Yablokov MY; Borshchev OV; Bessonov AA; Kirikova MN; Bailey MJ; Ponomarenko SA
    ACS Appl Mater Interfaces; 2015 Jun; 7(22):11755-64. PubMed ID: 25984650
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gravure printing of graphene for large-area flexible electronics.
    Secor EB; Lim S; Zhang H; Frisbie CD; Francis LF; Hersam MC
    Adv Mater; 2014 Jul; 26(26):4533-8. PubMed ID: 24782064
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-yield synthesis of few-layer graphene flakes through electrochemical expansion of graphite in propylene carbonate electrolyte.
    Wang J; Manga KK; Bao Q; Loh KP
    J Am Chem Soc; 2011 Jun; 133(23):8888-91. PubMed ID: 21557613
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Graphene Oxide-Assisted Liquid Phase Exfoliation of Graphite into Graphene for Highly Conductive Film and Electromechanical Sensors.
    Tung TT; Yoo J; Alotaibi FK; Nine MJ; Karunagaran R; Krebsz M; Nguyen GT; Tran DN; Feller JF; Losic D
    ACS Appl Mater Interfaces; 2016 Jun; 8(25):16521-32. PubMed ID: 27268515
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-Yield Production of Aqueous Graphene for Electrohydrodynamic Drop-on-Demand Printing of Biocompatible Conductive Patterns.
    Niaraki Asli AE; Guo J; Lai PL; Montazami R; Hashemi NN
    Biosensors (Basel); 2020 Jan; 10(1):. PubMed ID: 31963492
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Green Solvents for the Liquid Phase Exfoliation Production of Graphene: The Promising Case of Cyrene.
    Fernandes J; Nemala SS; De Bellis G; Capasso A
    Front Chem; 2022; 10():878799. PubMed ID: 35480388
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly Stretchable Sensor Based on Fluid Dynamics-Assisted Graphene Inks for Real-Time Monitoring of Sweat.
    Kil MS; Kim SJ; Park HJ; Yoon JH; Jeong JM; Choi BG
    ACS Appl Mater Interfaces; 2022 Oct; 14(42):48072-48080. PubMed ID: 36222414
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.