These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 28678238)

  • 1. High-density defects on PdAg nanowire networks as catalytic hot spots for efficient dehydrogenation of formic acid and reduction of nitrate.
    Liu H; Yu Y; Yang W; Lei W; Gao M; Guo S
    Nanoscale; 2017 Jul; 9(27):9305-9309. PubMed ID: 28678238
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Immobilization of palladium silver nanoparticles on NH
    Han J; Zhang Z; Hao Z; Li G; Liu T
    J Colloid Interface Sci; 2021 Apr; 587():736-742. PubMed ID: 33223240
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chromic hydroxide-decorated palladium nanoparticles confined by amine-functionalized mesoporous silica for rapid dehydrogenation of formic acid.
    Ding Y; Peng W; Zhang L; Xia J; Feng G; Lu ZH
    J Colloid Interface Sci; 2023 Jan; 630(Pt A):879-887. PubMed ID: 36306599
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metal-Nanoparticle-Catalyzed Hydrogen Generation from Formic Acid.
    Li Z; Xu Q
    Acc Chem Res; 2017 Jun; 50(6):1449-1458. PubMed ID: 28525274
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reducing-Agent-Free Instant Synthesis of Carbon-Supported Pd Catalysts in a Green Leidenfrost Droplet Reactor and Catalytic Activity in Formic Acid Dehydrogenation.
    Lee DW; Jin MH; Lee YJ; Park JH; Lee CB; Park JS
    Sci Rep; 2016 May; 6():26474. PubMed ID: 27198855
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unprecedentedly high formic acid dehydrogenation activity on an iridium complex with an N,N'-diimine ligand in water.
    Wang Z; Lu SM; Li J; Wang J; Li C
    Chemistry; 2015 Sep; 21(36):12592-5. PubMed ID: 26202172
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface Engineering of a Supported PdAg Catalyst for Hydrogenation of CO
    Mori K; Sano T; Kobayashi H; Yamashita H
    J Am Chem Soc; 2018 Jul; 140(28):8902-8909. PubMed ID: 29932642
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel networked wicker-like PtFe nanowires with branch-rich exteriors for efficient electrocatalysis.
    Zhang Y; Gao F; Song T; Wang C; Chen C; Du Y
    Nanoscale; 2019 Sep; 11(33):15561-15566. PubMed ID: 31393499
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PdAg Nanoparticles within Core-Shell Structured Zeolitic Imidazolate Framework as a Dual Catalyst for Formic Acid-based Hydrogen Storage/Production.
    Wen M; Mori K; Futamura Y; Kuwahara Y; Navlani-García M; An T; Yamashita H
    Sci Rep; 2019 Oct; 9(1):15675. PubMed ID: 31666596
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Zeolite-Encaged Pd-Mn Nanocatalysts for CO
    Sun Q; Chen BWJ; Wang N; He Q; Chang A; Yang CM; Asakura H; Tanaka T; Hülsey MJ; Wang CH; Yu J; Yan N
    Angew Chem Int Ed Engl; 2020 Nov; 59(45):20183-20191. PubMed ID: 32770613
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation of Pd-Co-based nanocatalysts and their superior applications in formic acid decomposition and methanol oxidation.
    Qin YL; Liu YC; Liang F; Wang LM
    ChemSusChem; 2015 Jan; 8(2):260-3. PubMed ID: 25504901
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tunable long-chains of core@shell PdAg@Pd as high-performance catalysts for ethanol oxidation.
    You H; Gao F; Song T; Zhang Y; Wang H; Liu X; Yuan M; Wang Y; Du Y
    J Colloid Interface Sci; 2020 Aug; 574():182-189. PubMed ID: 32311540
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient Catalytic Combustion of Cyclohexane over PdAg/Fe
    Liu Q; Wen M; Guo Y; Song S; Li G; An T
    ACS Appl Mater Interfaces; 2022 Dec; 14(50):55503-55516. PubMed ID: 36456474
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly Efficient Base-Free Dehydrogenation of Formic Acid at Low Temperature.
    Prichatz C; Trincado M; Tan L; Casas F; Kammer A; Junge H; Beller M; Grützmacher H
    ChemSusChem; 2018 Sep; 11(18):3092-3095. PubMed ID: 30062851
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrafine PdAu nanoparticles immobilized on amine functionalized carbon black toward fast dehydrogenation of formic acid at room temperature.
    Wu L; Ni B; Chen R; Shi C; Sun P; Chen T
    Nanoscale Adv; 2019 Nov; 1(11):4415-4421. PubMed ID: 36134405
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dehydrogenation of Formic Acid at Room Temperature: Boosting Palladium Nanoparticle Efficiency by Coupling with Pyridinic-Nitrogen-Doped Carbon.
    Bi QY; Lin JD; Liu YM; He HY; Huang FQ; Cao Y
    Angew Chem Int Ed Engl; 2016 Sep; 55(39):11849-53. PubMed ID: 27552650
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly Efficient Dehydrogenation of Formic Acid over Binary Palladium-Phosphorous Alloy Nanoclusters on N-Doped Carbon.
    Zhu L; Liang Y; Sun L; Wang J; Xu D
    Inorg Chem; 2021 Jul; 60(14):10707-10714. PubMed ID: 34196533
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mesoporous Silica Supported Pd-MnO
    Jin MH; Oh D; Park JH; Lee CB; Lee SW; Park JS; Lee KY; Lee DW
    Sci Rep; 2016 Sep; 6():33502. PubMed ID: 27666280
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Simple and Effective Principle for a Rational Design of Heterogeneous Catalysts for Dehydrogenation of Formic Acid.
    Li SJ; Zhou YT; Kang X; Liu DX; Gu L; Zhang QH; Yan JM; Jiang Q
    Adv Mater; 2019 Apr; 31(15):e1806781. PubMed ID: 30803061
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrogen Generation from Additive-Free Formic Acid Decomposition Under Mild Conditions by Pd/C: Experimental and DFT Studies.
    Sanchez F; Motta D; Roldan A; Hammond C; Villa A; Dimitratos N
    Top Catal; 2018; 61(3):254-266. PubMed ID: 30956509
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.