These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 28678267)

  • 1. Dynamic plasmonic nano-traps for single molecule surface-enhanced Raman scattering.
    Zhang Y; Shen J; Xie Z; Dou X; Min C; Lei T; Liu J; Zhu S; Yuan X
    Nanoscale; 2017 Aug; 9(30):10694-10700. PubMed ID: 28678267
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plasmonic Nanogap-Enhanced Raman Scattering with Nanoparticles.
    Nam JM; Oh JW; Lee H; Suh YD
    Acc Chem Res; 2016 Dec; 49(12):2746-2755. PubMed ID: 27993009
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced Raman scattering from aromatic dithiols electrosprayed into plasmonic nanojunctions.
    El-Khoury PZ; Johnson GE; Novikova IV; Gong Y; Joly AG; Evans JE; Zamkov M; Laskin J; Hess WP
    Faraday Discuss; 2015; 184():339-57. PubMed ID: 26406784
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasmofluidic single-molecule surface-enhanced Raman scattering from dynamic assembly of plasmonic nanoparticles.
    Patra PP; Chikkaraddy R; Tripathi RP; Dasgupta A; Kumar GV
    Nat Commun; 2014 Jul; 5():4357. PubMed ID: 25000476
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Review of Recent Progress of Plasmonic Materials and Nano-Structures for Surface-Enhanced Raman Scattering.
    Wang AX; Kong X
    Materials (Basel); 2015 Jun; 8(6):3024-3052. PubMed ID: 26900428
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Raman fingerprinting of single dielectric nanoparticles in plasmonic nanopores.
    Kerman S; Chen C; Li Y; Van Roy W; Lagae L; Van Dorpe P
    Nanoscale; 2015 Nov; 7(44):18612-8. PubMed ID: 26490057
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single-molecule Raman spectroscopy: a probe of surface dynamics and plasmonic fields.
    Haran G
    Acc Chem Res; 2010 Aug; 43(8):1135-43. PubMed ID: 20521801
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determining molecular orientation via single molecule SERS in a plasmonic nano-gap.
    Marshall ARL; Stokes J; Viscomi FN; Proctor JE; Gierschner J; Bouillard JG; Adawi AM
    Nanoscale; 2017 Nov; 9(44):17415-17421. PubMed ID: 29104980
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plasmonic hybridization induced trapping and manipulation of a single Au nanowire on a metallic surface.
    Zhang Y; Wang J; Shen J; Man Z; Shi W; Min C; Yuan G; Zhu S; Urbach HP; Yuan X
    Nano Lett; 2014 Nov; 14(11):6430-6. PubMed ID: 25302534
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plasmon-driven surface catalysis in hybridized plasmonic gap modes.
    Wang H; Liu T; Huang Y; Fang Y; Liu R; Wang S; Wen W; Sun M
    Sci Rep; 2014 Nov; 4():7087. PubMed ID: 25404139
    [TBL] [Abstract][Full Text] [Related]  

  • 11. AFM-Nano Manipulation of Plasmonic Molecules Used as "Nano-Lens" to Enhance Raman of Individual Nano-Objects.
    D'Orlando A; Bayle M; Louarn G; Humbert B
    Materials (Basel); 2019 Apr; 12(9):. PubMed ID: 31035562
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Particle-Film Plasmons on Periodic Silver Film over Nanosphere (AgFON): A Hybrid Plasmonic Nanoarchitecture for Surface-Enhanced Raman Spectroscopy.
    Lee J; Zhang Q; Park S; Choe A; Fan Z; Ko H
    ACS Appl Mater Interfaces; 2016 Jan; 8(1):634-42. PubMed ID: 26684078
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of Metallic Nanoparticles on Improving the Detection Capacity of a Micro-SERS Sensor Created by the Hybrid Waveguide of Metallic Slots and Dielectric Strips.
    Tang F; Boutami S; Adam PM
    ACS Omega; 2018 Apr; 3(4):4017-4026. PubMed ID: 31458638
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A planar plasmonic nano-gap and its array for enhancing light-matter interactions at the nanoscale.
    Zhang L; Wang X; Chen H; Liu C; Deng S
    Nanoscale; 2022 Sep; 14(34):12257-12264. PubMed ID: 35968906
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced single-molecule spectroscopy in highly confined optical fields: from λ/2-Fabry-Pérot resonators to plasmonic nano-antennas.
    Kern AM; Zhang D; Brecht M; Chizhik AI; Failla AV; Wackenhut F; Meixner AJ
    Chem Soc Rev; 2014 Feb; 43(4):1263-86. PubMed ID: 24365864
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasmonic nano-bowls for monitoring intra-membrane changes in liposomes, and DNA-based nanocarriers in suspension.
    Das S; Tinguely JC; Obuobi SAO; Škalko-Basnet N; Saxena K; Ahluwalia BS; Mehta DS
    Biomed Opt Express; 2024 Apr; 15(4):2293-2307. PubMed ID: 38633091
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tip-Enhanced Raman Scattering on Both Sides of the Schrödinger Equation.
    El-Khoury PZ
    Acc Chem Res; 2021 Dec; 54(24):4576-4583. PubMed ID: 34855342
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evanescent field excited plasmonic nano-antenna for improving SERS signal.
    Gu Y; Li H; Xu S; Liu Y; Xu W
    Phys Chem Chem Phys; 2013 Oct; 15(37):15494-8. PubMed ID: 23942757
    [TBL] [Abstract][Full Text] [Related]  

  • 19. M-shaped grating by nanoimprinting: a replicable, large-area, highly active plasmonic surface-enhanced Raman scattering substrate with nanogaps.
    Zhu Z; Bai B; Duan H; Zhang H; Zhang M; You O; Li Q; Tan Q; Wang J; Fan S; Jin G
    Small; 2014 Apr; 10(8):1603-11. PubMed ID: 24665074
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of electromagnetic enhancement of surface enhanced hyper Raman scattering using plasmonic properties of binary active sites in single Ag nanoaggregates.
    Itoh T; Yoshikawa H; Yoshida K; Biju V; Ishikawa M
    J Chem Phys; 2009 Jun; 130(21):214706. PubMed ID: 19508086
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.