These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 28678267)

  • 21. Self-assembled large-area annular cavity arrays with tunable cylindrical surface plasmons for sensing.
    Ni H; Wang M; Shen T; Zhou J
    ACS Nano; 2015 Feb; 9(2):1913-25. PubMed ID: 25639937
    [TBL] [Abstract][Full Text] [Related]  

  • 22. DNA Origami Directed Assembly of Gold Bowtie Nanoantennas for Single-Molecule Surface-Enhanced Raman Scattering.
    Zhan P; Wen T; Wang ZG; He Y; Shi J; Wang T; Liu X; Lu G; Ding B
    Angew Chem Int Ed Engl; 2018 Mar; 57(11):2846-2850. PubMed ID: 29377456
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A SERS and electrical sensor from gas-phase generated Ag nanoparticles self-assembled on planar substrates.
    Wang S; Tay LL; Liu H
    Analyst; 2016 Mar; 141(5):1721-33. PubMed ID: 26824092
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Reversible Gating of Plasmonic Coupling for Optical Signal Amplification.
    Khoury CG; Fales AM; Vo-Dinh T
    ACS Appl Mater Interfaces; 2016 Jul; 8(28):18157-64. PubMed ID: 27347606
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Metal nanoparticles for nano-imaging and nano-analysis.
    Ando J; Yano TA; Fujita K; Kawata S
    Phys Chem Chem Phys; 2013 Sep; 15(33):13713-22. PubMed ID: 23861007
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dynamic placement of plasmonic hotspots for super-resolution surface-enhanced Raman scattering.
    Ertsgaard CT; McKoskey RM; Rich IS; Lindquist NC
    ACS Nano; 2014 Oct; 8(10):10941-6. PubMed ID: 25268457
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ag gyrus-nanostructure supported on graphene/Au film with nanometer gap for ideal surface enhanced Raman scattering.
    Li C; Liu A; Zhang C; Wang M; Li Z; Xu S; Jiang S; Yu J; Yang C; Man B
    Opt Express; 2017 Aug; 25(17):20631-20641. PubMed ID: 29041742
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Particle-on-Film Gap Plasmons on Antireflective ZnO Nanocone Arrays for Molecular-Level Surface-Enhanced Raman Scattering Sensors.
    Lee Y; Lee J; Lee TK; Park J; Ha M; Kwak SK; Ko H
    ACS Appl Mater Interfaces; 2015 Dec; 7(48):26421-9. PubMed ID: 26575302
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Optical aggregation of metal nanoparticles in a microfluidic channel for surface-enhanced Raman scattering analysis.
    Tong L; Righini M; Gonzalez MU; Quidant R; Käll M
    Lab Chip; 2009 Jan; 9(2):193-5. PubMed ID: 19107272
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Plasmonic tweezers for optical manipulation and biomedical applications.
    Tan H; Hu H; Huang L; Qian K
    Analyst; 2020 Aug; 145(17):5699-5712. PubMed ID: 32692343
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An optimal substrate design for SERS: dual-scale diamond-shaped gold nano-structures fabricated via interference lithography.
    Ahn HJ; Thiyagarajan P; Jia L; Kim SI; Yoon JC; Thomas EL; Jang JH
    Nanoscale; 2013 Mar; 5(5):1836-42. PubMed ID: 23381682
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Plasmonic "nano-fingers on nanowires" as SERS substrates.
    Sharma Y; Dhawan A
    Opt Lett; 2016 May; 41(9):2085-8. PubMed ID: 27128080
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Synthesis, Optical Properties, and Multiplexed Raman Bio-Imaging of Surface Roughness-Controlled Nanobridged Nanogap Particles.
    Lee JH; Oh JW; Nam SH; Cha YS; Kim GH; Rhim WK; Kim NH; Kim J; Han SW; Suh YD; Nam JM
    Small; 2016 Sep; 12(34):4726-34. PubMed ID: 27028989
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Noble-Metal-Free Materials for Surface-Enhanced Raman Spectroscopy Detection.
    Tan X; Melkersson J; Wu S; Wang L; Zhang J
    Chemphyschem; 2016 Sep; 17(17):2630-9. PubMed ID: 27191682
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A hybrid atomistic electrodynamics-quantum mechanical approach for simulating surface-enhanced Raman scattering.
    Payton JL; Morton SM; Moore JE; Jensen L
    Acc Chem Res; 2014 Jan; 47(1):88-99. PubMed ID: 23965411
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fabry-Perot Cavity Control for Tunable Raman Scattering.
    Kim T; Lee J; Yu ES; Lee S; Woo H; Kwak J; Chung S; Choi I; Ryu YS
    Small; 2023 Jul; 19(29):e2207003. PubMed ID: 37017491
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Self-Assembled Metal Nanohole Arrays with Tunable Plasmonic Properties for SERS Single-Molecule Detection.
    Lospinoso D; Colombelli A; Lomascolo M; Rella R; Manera MG
    Nanomaterials (Basel); 2022 Jan; 12(3):. PubMed ID: 35159725
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Electrokinetic Manipulation Integrated Plasmonic-Photonic Hybrid Raman Nanosensors with Dually Enhanced Sensitivity.
    Liu C; Wang Z; Li E; Liang Z; Chakravarty S; Xu X; Wang AX; Chen RT; Fan D
    ACS Sens; 2017 Mar; 2(3):346-353. PubMed ID: 28723214
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Gold nanoparticles on polarizable surfaces as Raman scattering antennas.
    Chen SY; Mock JJ; Hill RT; Chilkoti A; Smith DR; Lazarides AA
    ACS Nano; 2010 Nov; 4(11):6535-46. PubMed ID: 21038892
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Plasmonic enhancement of SERS measured on molecules in carbon nanotubes.
    Mueller NS; Heeg S; Kusch P; Gaufrès E; Tang NY; Hübner U; Martel R; Vijayaraghavan A; Reich S
    Faraday Discuss; 2017 Dec; 205():85-103. PubMed ID: 28914310
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.