BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 28678703)

  • 1. Enforcing Co-Expression Within a Brain-Imaging Genomics Regression Framework.
    Zille P; Calhoun VD; Wang YP
    IEEE Trans Med Imaging; 2018 Dec; 37(12):2561-2571. PubMed ID: 28678703
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ENFORCING CO-EXPRESSION IN MULTIMODAL REGRESSION FRAMEWORK.
    Zille P; Calhoun VD; Wang YP
    Pac Symp Biocomput; 2017; 22():105-116. PubMed ID: 27896966
    [TBL] [Abstract][Full Text] [Related]  

  • 3. FDR-Corrected Sparse Canonical Correlation Analysis With Applications to Imaging Genomics.
    Gossmann A; Zille P; Calhoun V; Wang YP
    IEEE Trans Med Imaging; 2018 Aug; 37(8):1761-1774. PubMed ID: 29993802
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fused Estimation of Sparse Connectivity Patterns From Rest fMRI-Application to Comparison of Children and Adult Brains.
    Zille P; Calhoun VD; Stephen JM; Wilson TW; Wang YP
    IEEE Trans Med Imaging; 2018 Oct; 37(10):2165-2175. PubMed ID: 28682248
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Group sparse canonical correlation analysis for genomic data integration.
    Lin D; Zhang J; Li J; Calhoun VD; Deng HW; Wang YP
    BMC Bioinformatics; 2013 Aug; 14():245. PubMed ID: 23937249
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Significant correlation between a set of genetic polymorphisms and a functional brain network revealed by feature selection and sparse Partial Least Squares.
    Le Floch E; Guillemot V; Frouin V; Pinel P; Lalanne C; Trinchera L; Tenenhaus A; Moreno A; Zilbovicius M; Bourgeron T; Dehaene S; Thirion B; Poline JB; Duchesnay E
    Neuroimage; 2012 Oct; 63(1):11-24. PubMed ID: 22781162
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep Collaborative Learning With Application to the Study of Multimodal Brain Development.
    Hu W; Cai B; Zhang A; Calhoun VD; Wang YP
    IEEE Trans Biomed Eng; 2019 Dec; 66(12):3346-3359. PubMed ID: 30872216
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identify Consistent Cross-Modality Imaging Genetic Patterns via Discriminant Sparse Canonical Correlation Analysis.
    Wang M; Shao W; Hao X; Shen L; Zhang D
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(4):1549-1561. PubMed ID: 31581090
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Projection CCA Method for Effective fMRI Data Analysis.
    Qadar MA; Seghouane AK
    IEEE Trans Biomed Eng; 2019 Nov; 66(11):3247-3256. PubMed ID: 30843795
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of variants of canonical correlation analysis and partial least squares for combined analysis of MRI and genetic data.
    Grellmann C; Bitzer S; Neumann J; Westlye LT; Andreassen OA; Villringer A; Horstmann A
    Neuroimage; 2015 Feb; 107():289-310. PubMed ID: 25527238
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Robust Reduced Rank Graph Regression Method for Neuroimaging Genetic Analysis.
    Zhu X; Zhang W; Fan Y;
    Neuroinformatics; 2018 Oct; 16(3-4):351-361. PubMed ID: 29907892
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Bayesian group sparse multi-task regression model for imaging genetics.
    Greenlaw K; Szefer E; Graham J; Lesperance M; Nathoo FS;
    Bioinformatics; 2017 Aug; 33(16):2513-2522. PubMed ID: 28419235
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multi-set canonical correlation analysis for the fusion of concurrent single trial ERP and functional MRI.
    Correa NM; Eichele T; Adali T; Li YO; Calhoun VD
    Neuroimage; 2010 May; 50(4):1438-45. PubMed ID: 20100584
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimating Dynamic Functional Brain Connectivity With a Sparse Hidden Markov Model.
    Zhang G; Cai B; Zhang A; Stephen JM; Wilson TW; Calhoun VD; Wang YP
    IEEE Trans Med Imaging; 2020 Feb; 39(2):488-498. PubMed ID: 31329112
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stability test of canonical correlation analysis for studying brain-behavior relationships: The effects of subject-to-variable ratios and correlation strengths.
    Yang Q; Zhang X; Song Y; Liu F; Qin W; Yu C; Liang M
    Hum Brain Mapp; 2021 Jun; 42(8):2374-2392. PubMed ID: 33624333
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcriptome-guided amyloid imaging genetic analysis via a novel structured sparse learning algorithm.
    Yan J; Du L; Kim S; Risacher SL; Huang H; Moore JH; Saykin AJ; Shen L;
    Bioinformatics; 2014 Sep; 30(17):i564-71. PubMed ID: 25161248
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neuroimaging PheWAS (Phenome-Wide Association Study): A Free Cloud-Computing Platform for Big-Data, Brain-Wide Imaging Association Studies.
    Zhao L; Batta I; Matloff W; O'Driscoll C; Hobel S; Toga AW
    Neuroinformatics; 2021 Apr; 19(2):285-303. PubMed ID: 32822005
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mining Outcome-relevant Brain Imaging Genetic Associations via Three-way Sparse Canonical Correlation Analysis in Alzheimer's Disease.
    Hao X; Li C; Du L; Yao X; Yan J; Risacher SL; Saykin AJ; Shen L; Zhang D;
    Sci Rep; 2017 Mar; 7():44272. PubMed ID: 28291242
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrative analysis of gene expression and copy number alterations using canonical correlation analysis.
    Soneson C; Lilljebjörn H; Fioretos T; Fontes M
    BMC Bioinformatics; 2010 Apr; 11():191. PubMed ID: 20398334
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.