These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
190 related articles for article (PubMed ID: 28678706)
1. Detecting Anatomical Landmarks From Limited Medical Imaging Data Using Two-Stage Task-Oriented Deep Neural Networks. Zhang J; Liu M; Shen D IEEE Trans Image Process; 2017 Oct; 26(10):4753-4764. PubMed ID: 28678706 [TBL] [Abstract][Full Text] [Related]
2. Lung CT Image Registration through Landmark-constrained Learning with Convolutional Neural Network. Hu R; Wang H; Ristaniemi T; Zhu W; Sun X Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():1368-1371. PubMed ID: 33018243 [TBL] [Abstract][Full Text] [Related]
3. Deep Learning-Based Regression and Classification for Automatic Landmark Localization in Medical Images. Noothout JMH; De Vos BD; Wolterink JM; Postma EM; Smeets PAM; Takx RAP; Leiner T; Viergever MA; Isgum I IEEE Trans Med Imaging; 2020 Dec; 39(12):4011-4022. PubMed ID: 32746142 [TBL] [Abstract][Full Text] [Related]
4. MR-based synthetic CT generation using a deep convolutional neural network method. Han X Med Phys; 2017 Apr; 44(4):1408-1419. PubMed ID: 28192624 [TBL] [Abstract][Full Text] [Related]
5. Classification of CT brain images based on deep learning networks. Gao XW; Hui R; Tian Z Comput Methods Programs Biomed; 2017 Jan; 138():49-56. PubMed ID: 27886714 [TBL] [Abstract][Full Text] [Related]
6. Co-trained convolutional neural networks for automated detection of prostate cancer in multi-parametric MRI. Yang X; Liu C; Wang Z; Yang J; Min HL; Wang L; Cheng KT Med Image Anal; 2017 Dec; 42():212-227. PubMed ID: 28850876 [TBL] [Abstract][Full Text] [Related]
7. Learning to detect anatomical landmarks of the pelvis in X-rays from arbitrary views. Bier B; Goldmann F; Zaech JN; Fotouhi J; Hegeman R; Grupp R; Armand M; Osgood G; Navab N; Maier A; Unberath M Int J Comput Assist Radiol Surg; 2019 Sep; 14(9):1463-1473. PubMed ID: 31006106 [TBL] [Abstract][Full Text] [Related]
8. Automatic location scheme of anatomical landmarks in 3D head MRI based on the scale attention hourglass network. Li S; Gong Q; Li H; Chen S; Liu Y; Ruan G; Zhu L; Liu L; Chen H Comput Methods Programs Biomed; 2022 Feb; 214():106564. PubMed ID: 34894558 [TBL] [Abstract][Full Text] [Related]
9. Robust anatomical landmark detection with application to MR brain image registration. Han D; Gao Y; Wu G; Yap PT; Shen D Comput Med Imaging Graph; 2015 Dec; 46 Pt 3(0 3):277-90. PubMed ID: 26433614 [TBL] [Abstract][Full Text] [Related]
10. Fast and Accurate Craniomaxillofacial Landmark Detection via 3D Faster R-CNN. Chen X; Lian C; Deng HH; Kuang T; Lin HY; Xiao D; Gateno J; Shen D; Xia JJ; Yap PT IEEE Trans Med Imaging; 2021 Dec; 40(12):3867-3878. PubMed ID: 34310293 [TBL] [Abstract][Full Text] [Related]
11. Integrating spatial configuration into heatmap regression based CNNs for landmark localization. Payer C; Štern D; Bischof H; Urschler M Med Image Anal; 2019 May; 54():207-219. PubMed ID: 30947144 [TBL] [Abstract][Full Text] [Related]
12. Discovering Salient Anatomical Landmarks by Predicting Human Gaze. Droste R; Chatelain P; Drukker L; Sharma H; Papageorghiou AT; Noble JA Proc IEEE Int Symp Biomed Imaging; 2020 Apr; 2020():1711-1714. PubMed ID: 32489518 [TBL] [Abstract][Full Text] [Related]
13. A novel end-to-end classifier using domain transferred deep convolutional neural networks for biomedical images. Pang S; Yu Z; Orgun MA Comput Methods Programs Biomed; 2017 Mar; 140():283-293. PubMed ID: 28254085 [TBL] [Abstract][Full Text] [Related]
14. Multi-Instance Deep Learning: Discover Discriminative Local Anatomies for Bodypart Recognition. Zhennan Yan ; Yiqiang Zhan ; Zhigang Peng ; Shu Liao ; Shinagawa Y; Shaoting Zhang ; Metaxas DN; Xiang Sean Zhou IEEE Trans Med Imaging; 2016 May; 35(5):1332-1343. PubMed ID: 26863652 [TBL] [Abstract][Full Text] [Related]
15. Deep Anatomical Context Feature Learning for Cephalometric Landmark Detection. Oh K; Oh IS; Le VNT; Lee DW IEEE J Biomed Health Inform; 2021 Mar; 25(3):806-817. PubMed ID: 32750939 [TBL] [Abstract][Full Text] [Related]
16. Multiorgan structures detection using deep convolutional neural networks. Onieva JO; Serrano GG; Young TP; Washko GR; Carbayo MJL; Estépar RSJ Proc SPIE Int Soc Opt Eng; 2018 Feb; 10574():. PubMed ID: 30122800 [TBL] [Abstract][Full Text] [Related]
17. Deep learning of the sectional appearances of 3D CT images for anatomical structure segmentation based on an FCN voting method. Zhou X; Takayama R; Wang S; Hara T; Fujita H Med Phys; 2017 Oct; 44(10):5221-5233. PubMed ID: 28730602 [TBL] [Abstract][Full Text] [Related]
18. Landmark tracking in liver US images using cascade convolutional neural networks with long short-term memory. Zhang Y; Dai X; Tian Z; Lei Y; Wynne JF; Patel P; Chen Y; Liu T; Yang X Meas Sci Technol; 2023 May; 34(5):054002. PubMed ID: 36743834 [TBL] [Abstract][Full Text] [Related]
19. Retrieval Oriented Deep Feature Learning With Complementary Supervision Mining. Lv Y; Zhou W; Tian Q; Sun S; Li H IEEE Trans Image Process; 2018 Oct; 27(10):4945-4957. PubMed ID: 29985135 [TBL] [Abstract][Full Text] [Related]