These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 28678709)

  • 21. Transient impact of prolonged versus repetitive stretch on hand motor control in chronic stroke.
    Triandafilou KM; Ochoa J; Kang X; Fischer HC; Stoykov ME; Kamper DG
    Top Stroke Rehabil; 2011; 18(4):316-24. PubMed ID: 21914596
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Factors affecting the usability of an assistive soft robotic glove after stroke or multiple sclerosis.
    Palmcrantz S; Plantin J; Borg J
    J Rehabil Med; 2020 Mar; 52(3):jrm00027. PubMed ID: 31993671
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Development of a novel haptic glove for improving finger dexterity in poststroke rehabilitation.
    Lin CY; Tsai CM; Shih PC; Wu HC
    Technol Health Care; 2015; 24 Suppl 1():S97-103. PubMed ID: 26409543
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Validation of the efficiency of a robotic rehabilitation training system for recovery of severe plegie hand motor function after a stroke.
    Tanabe H; Ikuta M; Morita Y
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():579-584. PubMed ID: 28813882
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Aspects of joint coordination are preserved during pointing in persons with post-stroke hemiparesis.
    Reisman DS; Scholz JP
    Brain; 2003 Nov; 126(Pt 11):2510-27. PubMed ID: 12958080
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Carryover effects of cyclical stretching of the digits on hand function in stroke survivors.
    Triandafilou KM; Kamper DG
    Arch Phys Med Rehabil; 2014 Aug; 95(8):1571-6. PubMed ID: 24794423
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Test-retest reproducibility and smallest real difference of 5 hand function tests in patients with stroke.
    Chen HM; Chen CC; Hsueh IP; Huang SL; Hsieh CL
    Neurorehabil Neural Repair; 2009 Jun; 23(5):435-40. PubMed ID: 19261767
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Upper limb motor training using a Saebo
    Lannin NA; Cusick A; Hills C; Kinnear B; Vogel K; Matthews K; Bowring G
    Aust Occup Ther J; 2016 Dec; 63(6):364-372. PubMed ID: 27646624
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hand Spring Operated Movement Enhancer (HandSOME): a portable, passive hand exoskeleton for stroke rehabilitation.
    Brokaw EB; Black I; Holley RJ; Lum PS
    IEEE Trans Neural Syst Rehabil Eng; 2011 Aug; 19(4):391-9. PubMed ID: 21622079
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Design of a wearable hand exoskeleton for exercising flexion/extension of the fingers.
    Jo I; Lee J; Park Y; Bae J
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1615-1620. PubMed ID: 28814051
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Overall design and implementation of the virtual glove.
    Placidi G; Avola D; Iacoviello D; Cinque L
    Comput Biol Med; 2013 Nov; 43(11):1927-40. PubMed ID: 24209938
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Quality of Grasping and the Role of Haptics in a 3-D Immersive Virtual Reality Environment in Individuals With Stroke.
    Levin MF; Magdalon EC; Michaelsen SM; Quevedo AA
    IEEE Trans Neural Syst Rehabil Eng; 2015 Nov; 23(6):1047-55. PubMed ID: 25594971
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Development of a Wearable Glove System with Multiple Sensors for Hand Kinematics Assessment.
    Fei F; Xian S; Xie X; Wu C; Yang D; Yin K; Zhang G
    Micromachines (Basel); 2021 Mar; 12(4):. PubMed ID: 33801662
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A pilot study to assess use of passive extension bias to facilitate finger movement for repetitive task practice after stroke.
    Iwamuro BT; Fischer HC; Kamper DG
    Top Stroke Rehabil; 2011; 18(4):308-15. PubMed ID: 21914595
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A multichannel-near-infrared-spectroscopy-triggered robotic hand rehabilitation system for stroke patients.
    Lee J; Mukae N; Arata J; Iwata H; Iramina K; Iihara K; Hashizume M
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():158-163. PubMed ID: 28813811
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of electromyography-driven robot-aided hand training with neuromuscular electrical stimulation on hand control performance after chronic stroke.
    Rong W; Tong KY; Hu XL; Ho SK
    Disabil Rehabil Assist Technol; 2015 Mar; 10(2):149-59. PubMed ID: 24377757
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Development of a Biomimetic Extensor Mechanism for Restoring Normal Kinematics of Finger Movements Post-Stroke.
    Kim DH; Lee SW; Park HS
    IEEE Trans Neural Syst Rehabil Eng; 2019 Oct; 27(10):2107-2117. PubMed ID: 31484125
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [E Glove Evaluation & Training System Based on ARAT and Fusion of Visual and Tactile Information].
    Li Y; Zhao C; Fei S; Luo L
    Zhongguo Yi Liao Qi Xie Za Zhi; 2017 Jul; 41(4):244-247. PubMed ID: 29862780
    [TBL] [Abstract][Full Text] [Related]  

  • 39. MusicGlove: motivating and quantifying hand movement rehabilitation by using functional grips to play music.
    Friedman N; Chan V; Zondervan D; Bachman M; Reinkensmeyer DJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():2359-63. PubMed ID: 22254815
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A pneumatic glove and immersive virtual reality environment for hand rehabilitative training after stroke.
    Connelly L; Jia Y; Toro ML; Stoykov ME; Kenyon RV; Kamper DG
    IEEE Trans Neural Syst Rehabil Eng; 2010 Oct; 18(5):551-9. PubMed ID: 20378482
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.