These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Joint Learning of Multiple Sparse Matrix Gaussian Graphical Models. Huang F; Chen S IEEE Trans Neural Netw Learn Syst; 2015 Nov; 26(11):2606-20. PubMed ID: 25751876 [TBL] [Abstract][Full Text] [Related]
3. Sparse Estimation of Conditional Graphical Models With Application to Gene Networks. Li B; Chuns H; Zhao H J Am Stat Assoc; 2012 Jan; 107(497):152-167. PubMed ID: 24574574 [TBL] [Abstract][Full Text] [Related]
4. Learning Graphical Models With Hubs. Tan KM; London P; Mohan K; Lee SI; Fazel M; Witten D J Mach Learn Res; 2014 Oct; 15():3297-3331. PubMed ID: 25620891 [TBL] [Abstract][Full Text] [Related]
5. The joint graphical lasso for inverse covariance estimation across multiple classes. Danaher P; Wang P; Witten DM J R Stat Soc Series B Stat Methodol; 2014 Mar; 76(2):373-397. PubMed ID: 24817823 [TBL] [Abstract][Full Text] [Related]
6. Joint Learning of Multiple Differential Networks With Latent Variables. Ou-Yang L; Zhang XF; Zhao XM; Wang DD; Wang FL; Lei B; Yan H IEEE Trans Cybern; 2019 Sep; 49(9):3494-3506. PubMed ID: 29994625 [TBL] [Abstract][Full Text] [Related]
7. Simultaneous Clustering and Estimation of Heterogeneous Graphical Models. Hao B; Sun WW; Liu Y; Cheng G J Mach Learn Res; 2018 Apr; 18():. PubMed ID: 30662373 [TBL] [Abstract][Full Text] [Related]
8. A SPARSE CONDITIONAL GAUSSIAN GRAPHICAL MODEL FOR ANALYSIS OF GENETICAL GENOMICS DATA. Yin J; Li H Ann Appl Stat; 2011 Dec; 5(4):2630-2650. PubMed ID: 22905077 [TBL] [Abstract][Full Text] [Related]
9. Weighted Fused Pathway Graphical Lasso for Joint Estimation of Multiple Gene Networks. Wu N; Huang J; Zhang XF; Ou-Yang L; He S; Zhu Z; Xie W Front Genet; 2019; 10():623. PubMed ID: 31396259 [TBL] [Abstract][Full Text] [Related]
11. Multiple Matrix Gaussian Graphs Estimation. Zhu Y; Li L J R Stat Soc Series B Stat Methodol; 2018 Nov; 80(5):927-950. PubMed ID: 30505211 [TBL] [Abstract][Full Text] [Related]
12. Joint Estimation of Multiple Dependent Gaussian Graphical Models with Applications to Mouse Genomics. Xie Y; Liu Y; Valdar W Biometrika; 2016 Sep; 103(3):493-511. PubMed ID: 29038606 [TBL] [Abstract][Full Text] [Related]
13. An Integrated Approach of Learning Genetic Networks From Genome-Wide Gene Expression Data Using Gaussian Graphical Model and Monte Carlo Method. Zhao H; Datta S; Duan ZH Bioinform Biol Insights; 2023; 17():11779322231152972. PubMed ID: 36865982 [TBL] [Abstract][Full Text] [Related]
14. The cluster graphical lasso for improved estimation of Gaussian graphical models. Tan KM; Witten D; Shojaie A Comput Stat Data Anal; 2015 May; 85():23-36. PubMed ID: 25642008 [TBL] [Abstract][Full Text] [Related]
15. SMURC: High-Dimension Small-Sample Multivariate Regression With Covariance Estimation. Bayar B; Bouaynaya N; Shterenberg R IEEE J Biomed Health Inform; 2017 Mar; 21(2):573-581. PubMed ID: 26761909 [TBL] [Abstract][Full Text] [Related]
16. On the inconsistency of ℓ Heinävaara O; Leppä-Aho J; Corander J; Honkela A BMC Bioinformatics; 2016 Dec; 17(Suppl 16):448. PubMed ID: 28105909 [TBL] [Abstract][Full Text] [Related]
17. Structured Learning of Gaussian Graphical Models. Mohan K; Chung MJ; Han S; Witten D; Lee SI; Fazel M Adv Neural Inf Process Syst; 2012; 2012():629-637. PubMed ID: 25360066 [TBL] [Abstract][Full Text] [Related]