These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 28678787)

  • 41. Machine learning in medicine: a practical introduction to natural language processing.
    Harrison CJ; Sidey-Gibbons CJ
    BMC Med Res Methodol; 2021 Jul; 21(1):158. PubMed ID: 34332525
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Cell-Based No-Wash Fluorescence Assays for Compound Screens Using a Fluorescence Cytometry Plate Reader.
    Gorshkov K; Pradhan M; Xu M; Yang S; Lee EM; Chen CZ; Shen M; Zheng W
    J Pharmacol Exp Ther; 2020 Sep; 374(3):500-511. PubMed ID: 32532853
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Impact of new technologies for cellular screening along the drug value chain.
    Möller C; Slack M
    Drug Discov Today; 2010 May; 15(9-10):384-90. PubMed ID: 20206290
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Can Predictive Modeling Tools Identify Patients at High Risk of Prolonged Opioid Use After ACL Reconstruction?
    Anderson AB; Grazal CF; Balazs GC; Potter BK; Dickens JF; Forsberg JA
    Clin Orthop Relat Res; 2020 Jul; 478(7):0-1618. PubMed ID: 32282466
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Semantic biomedical resource discovery: a Natural Language Processing framework.
    Sfakianaki P; Koumakis L; Sfakianakis S; Iatraki G; Zacharioudakis G; Graf N; Marias K; Tsiknakis M
    BMC Med Inform Decis Mak; 2015 Sep; 15():77. PubMed ID: 26423616
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Using text mining techniques to extract phenotypic information from the PhenoCHF corpus.
    Alnazzawi N; Thompson P; Batista-Navarro R; Ananiadou S
    BMC Med Inform Decis Mak; 2015; 15 Suppl 2(Suppl 2):S3. PubMed ID: 26099853
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Pre-trained models, data augmentation, and ensemble learning for biomedical information extraction and document classification.
    Erdengasileng A; Han Q; Zhao T; Tian S; Sui X; Li K; Wang W; Wang J; Hu T; Pan F; Zhang Y; Zhang J
    Database (Oxford); 2022 Aug; 2022():. PubMed ID: 35962559
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Application of Bioactivity Profile-Based Fingerprints for Building Machine Learning Models.
    Sturm N; Sun J; Vandriessche Y; Mayr A; Klambauer G; Carlsson L; Engkvist O; Chen H
    J Chem Inf Model; 2019 Mar; 59(3):962-972. PubMed ID: 30408959
    [TBL] [Abstract][Full Text] [Related]  

  • 49. An unsupervised and customizable misspelling generator for mining noisy health-related text sources.
    Sarker A; Gonzalez-Hernandez G
    J Biomed Inform; 2018 Dec; 88():98-107. PubMed ID: 30445220
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Automating Ischemic Stroke Subtype Classification Using Machine Learning and Natural Language Processing.
    Garg R; Oh E; Naidech A; Kording K; Prabhakaran S
    J Stroke Cerebrovasc Dis; 2019 Jul; 28(7):2045-2051. PubMed ID: 31103549
    [TBL] [Abstract][Full Text] [Related]  

  • 51. PTML Combinatorial Model of ChEMBL Compounds Assays for Multiple Types of Cancer.
    Bediaga H; Arrasate S; González-Díaz H
    ACS Comb Sci; 2018 Nov; 20(11):621-632. PubMed ID: 30240186
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Serendipity-A Machine-Learning Application for Mining Serendipitous Drug Usage From Social Media.
    Ru B; Li D; Hu Y; Yao L
    IEEE Trans Nanobioscience; 2019 Jul; 18(3):324-334. PubMed ID: 30951476
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Development and validation of a quantitative cell-based bioassay for comparing the pharmacokinetic profiles of two recombinant erythropoietic proteins in serum.
    Wei X; Grill DS; Heatherington AC; Swanson SJ; Gupta S
    J Pharm Biomed Anal; 2007 Jan; 43(2):666-76. PubMed ID: 16971087
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Hit Dexter: A Machine-Learning Model for the Prediction of Frequent Hitters.
    Stork C; Wagner J; Friedrich NO; de Bruyn Kops C; Šícho M; Kirchmair J
    ChemMedChem; 2018 Mar; 13(6):564-571. PubMed ID: 29285887
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Constructing a Graph Database for Semantic Literature-Based Discovery.
    Hristovski D; Kastrin A; Dinevski D; Rindflesch TC
    Stud Health Technol Inform; 2015; 216():1094. PubMed ID: 26262393
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Pediatric Injury Surveillance From Uncoded Emergency Department Admission Records in Italy: Machine Learning-Based Text-Mining Approach.
    Azzolina D; Bressan S; Lorenzoni G; Baldan GA; Bartolotta P; Scognamiglio F; Francavilla A; Lanera C; Da Dalt L; Gregori D
    JMIR Public Health Surveill; 2023 Jul; 9():e44467. PubMed ID: 37436799
    [TBL] [Abstract][Full Text] [Related]  

  • 57. MyoScreen, a High-Throughput Phenotypic Screening Platform Enabling Muscle Drug Discovery.
    Young J; Margaron Y; Fernandes M; Duchemin-Pelletier E; Michaud J; Flaender M; Lorintiu O; Degot S; Poydenot P
    SLAS Discov; 2018 Sep; 23(8):790-806. PubMed ID: 29498891
    [TBL] [Abstract][Full Text] [Related]  

  • 58. An annotated corpus with nanomedicine and pharmacokinetic parameters.
    Lewinski NA; Jimenez I; McInnes BT
    Int J Nanomedicine; 2017; 12():7519-7527. PubMed ID: 29066897
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Identification of new drug classification terms in textual resources.
    Kolárik C; Hofmann-Apitius M; Zimmermann M; Fluck J
    Bioinformatics; 2007 Jul; 23(13):i264-72. PubMed ID: 17646305
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Past and future uses of text mining in ecology and evolution.
    Farrell MJ; Brierley L; Willoughby A; Yates A; Mideo N
    Proc Biol Sci; 2022 May; 289(1975):20212721. PubMed ID: 35582795
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.