These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 28679722)

  • 21. Evolutionary fine-tuning of background-matching camouflage among geographical populations in the sandy beach tiger beetle.
    Yamamoto N; Sota T
    Proc Biol Sci; 2020 Dec; 287(1941):20202315. PubMed ID: 33323087
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Does avian conspicuous colouration increase or reduce predation risk?
    Ruiz-Rodríguez M; Avilés JM; Cuervo JJ; Parejo D; Ruano F; Zamora-Muñoz C; Sergio F; López-Jiménez L; Tanferna A; Martín-Vivaldi M
    Oecologia; 2013 Sep; 173(1):83-93. PubMed ID: 23386048
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Aposematic coloration from Mid-Cretaceous Kachin amber.
    Xu C; Luo C; Jarzembowski EA; Fang Y; Wang B
    Philos Trans R Soc Lond B Biol Sci; 2022 Mar; 377(1847):20210039. PubMed ID: 35124999
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Predator selection on multicomponent warning signals in an aposematic moth.
    Hämäläinen L; Binns GE; Hart NS; Mappes J; McDonald PG; O'Neill LG; Rowland HM; Umbers KDL; Herberstein ME
    Behav Ecol; 2024; 35(1):arad097. PubMed ID: 38550303
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Aposematism and crypsis combined as a result of distance dependence: functional versatility of the colour pattern in the swallowtail butterfly larva.
    Tullberg BS; Merilaita S; Wiklund C
    Proc Biol Sci; 2005 Jul; 272(1570):1315-21. PubMed ID: 16006332
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The effect of pelage, background, and distance on predator detection and the evolution of primate color vision.
    de Moraes PZ; Diniz P; Spyrides MHC; Pessoa DMA
    Am J Primatol; 2021 Feb; 83(2):e23230. PubMed ID: 33475188
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Differential detectability of polymorphic warning signals under varying light environments.
    Rojas B; Rautiala P; Mappes J
    Behav Processes; 2014 Nov; 109 Pt B():164-72. PubMed ID: 25158931
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cryptic differences in colour among Müllerian mimics: how can the visual capacities of predators and prey shape the evolution of wing colours?
    Llaurens V; Joron M; Théry M
    J Evol Biol; 2014 Mar; 27(3):531-40. PubMed ID: 24444083
    [TBL] [Abstract][Full Text] [Related]  

  • 29. No evidence of quantitative signal honesty across species of aposematic burnet moths (Lepidoptera: Zygaenidae).
    Briolat ES; Zagrobelny M; Olsen CE; Blount JD; Stevens M
    J Evol Biol; 2019 Jan; 32(1):31-48. PubMed ID: 30317689
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evolutionary transitions from camouflage to aposematism: Hidden signals play a pivotal role.
    Loeffler-Henry K; Kang C; Sherratt TN
    Science; 2023 Mar; 379(6637):1136-1140. PubMed ID: 36927015
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Camouflage accuracy in Sahara-Sahel desert rodents.
    Nokelainen O; Brito JC; Scott-Samuel NE; Valkonen JK; Boratyński Z
    J Anim Ecol; 2020 Jul; 89(7):1658-1669. PubMed ID: 32227336
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Conspicuous visual signals do not coevolve with increased body size in marine sea slugs.
    Cheney KL; Cortesi F; How MJ; Wilson NG; Blomberg SP; Winters AE; Umanzör S; Marshall NJ
    J Evol Biol; 2014 Apr; 27(4):676-87. PubMed ID: 24588922
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Warning Coloration, Body Size, and the Evolution of Gregarious Behavior in Butterfly Larvae.
    McLellan CF; Cuthill IC; Montgomery SH
    Am Nat; 2023 Jul; 202(1):64-77. PubMed ID: 37384762
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Predator experience on cryptic prey affects the survival of conspicuous aposematic prey.
    Lindström L; Alatalo RV; Lyytinen A; Mappes J
    Proc Biol Sci; 2001 Feb; 268(1465):357-61. PubMed ID: 11270431
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Iridescence as Camouflage.
    Kjernsmo K; Whitney HM; Scott-Samuel NE; Hall JR; Knowles H; Talas L; Cuthill IC
    Curr Biol; 2020 Feb; 30(3):551-555.e3. PubMed ID: 31978333
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Predator mixes and the conspicuousness of aposematic signals.
    Endler JA; Mappes J
    Am Nat; 2004 Apr; 163(4):532-47. PubMed ID: 15122501
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evidence for the higher importance of signal size over body size in aposematic signaling in insects.
    Remmel T; Tammarub T
    J Insect Sci; 2011; 11():4. PubMed ID: 21521142
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Frequency-dependent taste-rejection by avian predation may select for defence chemical polymorphisms in aposematic prey.
    Skelhorn J; Rowe C
    Biol Lett; 2005 Dec; 1(4):500-3. PubMed ID: 17148243
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Quantifying camouflage: how to predict detectability from appearance.
    Troscianko J; Skelhorn J; Stevens M
    BMC Evol Biol; 2017 Jan; 17(1):7. PubMed ID: 28056761
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Environment-dependent attack rates of cryptic and aposematic butterflies.
    Seymoure BM; Raymundo A; McGraw KJ; Owen McMillan W; Rutowski RL
    Curr Zool; 2018 Oct; 64(5):663-669. PubMed ID: 30323845
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.