BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 28680095)

  • 1. Osteopontin facilitates West Nile virus neuroinvasion via neutrophil "Trojan horse" transport.
    Paul AM; Acharya D; Duty L; Thompson EA; Le L; Stokic DS; Leis AA; Bai F
    Sci Rep; 2017 Jul; 7(1):4722. PubMed ID: 28680095
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CCR5 limits cortical viral loads during West Nile virus infection of the central nervous system.
    Durrant DM; Daniels BP; Pasieka T; Dorsey D; Klein RS
    J Neuroinflammation; 2015 Dec; 12():233. PubMed ID: 26667390
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential Roles of Chemokines CCL2 and CCL7 in Monocytosis and Leukocyte Migration during West Nile Virus Infection.
    Bardina SV; Michlmayr D; Hoffman KW; Obara CJ; Sum J; Charo IF; Lu W; Pletnev AG; Lim JK
    J Immunol; 2015 Nov; 195(9):4306-18. PubMed ID: 26401006
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Osteopontin Impacts
    Bortell N; Flynn C; Conti B; Fox HS; Marcondes MCG
    Mediators Inflamm; 2017; 2017():7582437. PubMed ID: 28811681
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemokine Receptor Ccr7 Restricts Fatal West Nile Virus Encephalitis.
    Bardina SV; Brown JA; Michlmayr D; Hoffman KW; Sum J; Pletnev AG; Lira SA; Lim JK
    J Virol; 2017 May; 91(10):. PubMed ID: 28356527
    [TBL] [Abstract][Full Text] [Related]  

  • 6. West Nile Virus spread and differential chemokine response in the central nervous system of mice: Role in pathogenic mechanisms of encephalitis.
    Vidaña B; Johnson N; Fooks AR; Sánchez-Cordón PJ; Hicks DJ; Nuñez A
    Transbound Emerg Dis; 2020 Mar; 67(2):799-810. PubMed ID: 31655004
    [TBL] [Abstract][Full Text] [Related]  

  • 7. STING is required for host defense against neuropathological West Nile virus infection.
    McGuckin Wuertz K; Treuting PM; Hemann EA; Esser-Nobis K; Snyder AG; Graham JB; Daniels BP; Wilkins C; Snyder JM; Voss KM; Oberst A; Lund J; Gale M
    PLoS Pathog; 2019 Aug; 15(8):e1007899. PubMed ID: 31415679
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic diversity in the collaborative cross model recapitulates human West Nile virus disease outcomes.
    Graham JB; Thomas S; Swarts J; McMillan AA; Ferris MT; Suthar MS; Treuting PM; Ireton R; Gale M; Lund JM
    mBio; 2015 May; 6(3):e00493-15. PubMed ID: 25944860
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tissue tropism and neuroinvasion of West Nile virus do not differ for two mouse strains with different survival rates.
    Brown AN; Kent KA; Bennett CJ; Bernard KA
    Virology; 2007 Nov; 368(2):422-30. PubMed ID: 17675128
    [TBL] [Abstract][Full Text] [Related]  

  • 10. West Nile virus-induced disruption of the blood-brain barrier in mice is characterized by the degradation of the junctional complex proteins and increase in multiple matrix metalloproteinases.
    Roe K; Kumar M; Lum S; Orillo B; Nerurkar VR; Verma S
    J Gen Virol; 2012 Jun; 93(Pt 6):1193-1203. PubMed ID: 22398316
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploration of West Nile Virus Infection in Mouse Models.
    Wang P
    Methods Mol Biol; 2016; 1435():71-81. PubMed ID: 27188551
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cellular microRNA-155 Regulates Virus-Induced Inflammatory Response and Protects against Lethal West Nile Virus Infection.
    Natekar JP; Rothan HA; Arora K; Strate PG; Kumar M
    Viruses; 2019 Dec; 12(1):. PubMed ID: 31861621
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Peli1 facilitates virus replication and promotes neuroinflammation during West Nile virus infection.
    Luo H; Winkelmann ER; Zhu S; Ru W; Mays E; Silvas JA; Vollmer LL; Gao J; Peng BH; Bopp NE; Cromer C; Shan C; Xie G; Li G; Tesh R; Popov VL; Shi PY; Sun SC; Wu P; Klein RS; Tang SJ; Zhang W; Aguilar PV; Wang T
    J Clin Invest; 2018 Nov; 128(11):4980-4991. PubMed ID: 30247157
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Interferon-Stimulated Gene Ifitm3 Restricts West Nile Virus Infection and Pathogenesis.
    Gorman MJ; Poddar S; Farzan M; Diamond MS
    J Virol; 2016 Sep; 90(18):8212-25. PubMed ID: 27384652
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A paradoxical role for neutrophils in the pathogenesis of West Nile virus.
    Bai F; Kong KF; Dai J; Qian F; Zhang L; Brown CR; Fikrig E; Montgomery RR
    J Infect Dis; 2010 Dec; 202(12):1804-12. PubMed ID: 21050124
    [TBL] [Abstract][Full Text] [Related]  

  • 16. West Nile virus: immunity and pathogenesis.
    Lim SM; Koraka P; Osterhaus AD; Martina BE
    Viruses; 2011 Jun; 3(6):811-28. PubMed ID: 21994755
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Treatment with Granulocyte-Macrophage Colony-Stimulating Factor Reduces Viral Titers in the Brains of West Nile Virus-Infected Mice and Improves Survival.
    Stonedahl S; Leser JS; Clarke P; Potter H; Boyd TD; Tyler KL
    J Virol; 2023 Mar; 97(3):e0180522. PubMed ID: 36802227
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CXCR3 mediates region-specific antiviral T cell trafficking within the central nervous system during West Nile virus encephalitis.
    Zhang B; Chan YK; Lu B; Diamond MS; Klein RS
    J Immunol; 2008 Feb; 180(4):2641-9. PubMed ID: 18250476
    [TBL] [Abstract][Full Text] [Related]  

  • 19. IL-22 signaling contributes to West Nile encephalitis pathogenesis.
    Wang P; Bai F; Zenewicz LA; Dai J; Gate D; Cheng G; Yang L; Qian F; Yuan X; Montgomery RR; Flavell RA; Town T; Fikrig E
    PLoS One; 2012; 7(8):e44153. PubMed ID: 22952908
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CD4+ T-cell responses are required for clearance of West Nile virus from the central nervous system.
    Sitati EM; Diamond MS
    J Virol; 2006 Dec; 80(24):12060-9. PubMed ID: 17035323
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.