These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 28680143)

  • 1. Fabrication of Single Crystal Gallium Phosphide Thin Films on Glass.
    Emmer H; Chen CT; Saive R; Friedrich D; Horie Y; Arbabi A; Faraon A; Atwater HA
    Sci Rep; 2017 Jul; 7(1):4643. PubMed ID: 28680143
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dopant ion size and electronic structure effects on transparent conducting oxides. Sc-doped CdO thin films grown by MOCVD.
    Jin S; Yang Y; Medvedeva JE; Ireland JR; Metz AW; Ni J; Kannewurf CR; Freeman AJ; Marks TJ
    J Am Chem Soc; 2004 Oct; 126(42):13787-93. PubMed ID: 15493938
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transparent conducting oxides: texture and microstructure effects on charge carrier mobility in MOCVD-derived CdO thin films grown with a thermally stable, low-melting precursor.
    Metz AW; Ireland JR; Zheng JG; Lobo RP; Yang Y; Ni J; Stern CL; Dravid VP; Bontemps N; Kannewurf CR; Poeppelmeier KR; Marks TJ
    J Am Chem Soc; 2004 Jul; 126(27):8477-92. PubMed ID: 15238005
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CdO as the archetypical transparent conducting oxide. Systematics of dopant ionic radius and electronic structure effects on charge transport and band structure.
    Yang Y; Jin S; Medvedeva JE; Ireland JR; Metz AW; Ni J; Hersam MC; Freeman AJ; Marks TJ
    J Am Chem Soc; 2005 Jun; 127(24):8796-804. PubMed ID: 15954786
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gallium phosphide optical metasurfaces for visible light applications.
    Melli M; West M; Hickman S; Dhuey S; Lin D; Khorasaninejad M; Chang C; Jolly S; Tae H; Poliakov E; St Hilaire P; Cabrini S; Peroz C; Klug M
    Sci Rep; 2020 Nov; 10(1):20694. PubMed ID: 33244040
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carrier properties of B atomic-layer-doped Si films grown by ECR Ar plasma-enhanced CVD without substrate heating.
    Sakuraba M; Sugawara K; Nosaka T; Akima H; Sato S
    Sci Technol Adv Mater; 2017; 18(1):294-306. PubMed ID: 28567175
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Growth and characterization of V
    Mola GT; Arbab EA; Taleatu BA; Kaviyarasu K; Ahmad I; Maaza M
    J Microsc; 2017 Feb; 265(2):214-221. PubMed ID: 27682151
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanostructured amorphous gallium phosphide on silica for nonlinear and ultrafast nanophotonics.
    Tilmann B; Grinblat G; Berté R; Özcan M; Kunzelmann VF; Nickel B; Sharp ID; Cortés E; Maier SA; Li Y
    Nanoscale Horiz; 2020 Nov; 5(11):1500-1508. PubMed ID: 32996533
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploring the optical properties of Vernier phase yttrium oxyfluoride thin films grown by pulsed liquid injection MOCVD.
    Zhang ST; Modreanu M; Roussel H; Jiménez C; Deschanvres JL
    Dalton Trans; 2018 Feb; 47(8):2655-2661. PubMed ID: 29405216
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Epitaxial growth and magnetic properties of ultraviolet transparent Ga2O3/(Ga1-xFex)2O3 multilayer thin films.
    Guo D; An Y; Cui W; Zhi Y; Zhao X; Lei M; Li L; Li P; Wu Z; Tang W
    Sci Rep; 2016 Apr; 6():25166. PubMed ID: 27121446
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Scalable Indium Phosphide Thin-Film Nanophotonics Platform for Photovoltaic and Photoelectrochemical Devices.
    Lin Q; Sarkar D; Lin Y; Yeung M; Blankemeier L; Hazra J; Wang W; Niu S; Ravichandran J; Fan Z; Kapadia R
    ACS Nano; 2017 May; 11(5):5113-5119. PubMed ID: 28463486
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication and characterization of epitaxial Ba0.7Sr0.3TiO3 thin films for optical waveguide applications.
    Wang DY; Chan HL; Choy CL
    Appl Opt; 2006 Mar; 45(9):1972-8. PubMed ID: 16579567
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ti-doped indium tin oxide thin films for transparent field-effect transistors: control of charge-carrier density and crystalline structure.
    Kim JI; Ji KH; Jang M; Yang H; Choi R; Jeong JK
    ACS Appl Mater Interfaces; 2011 Jul; 3(7):2522-8. PubMed ID: 21663320
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced p-type conductivity and band gap narrowing in heavily Al doped NiO thin films deposited by RF magnetron sputtering.
    Nandy S; Maiti UN; Ghosh CK; Chattopadhyay KK
    J Phys Condens Matter; 2009 Mar; 21(11):115804. PubMed ID: 21693930
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optical Tuning of Resistance Switching in Polycrystalline Gallium Phosphide Thin Films.
    Kurnia F; Seidel J; Hart JN; Valanoor N
    J Phys Chem Lett; 2021 Mar; 12(9):2327-2333. PubMed ID: 33651940
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strain-Compensated InGaAsP Superlattices for Defect Reduction of InP Grown on Exact-Oriented (001) Patterned Si Substrates by Metal Organic Chemical Vapor Deposition.
    Megalini L; Šuran Brunelli ST; Charles WO; Taylor A; Isaac B; Bowers JE; Klamkin J
    Materials (Basel); 2018 Feb; 11(3):. PubMed ID: 29495381
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of the microstructure of GaP films grown on {111} Si by liquid phase epitaxy.
    Huang SR; Lu X; Barnett A; Opila RL; Mogili V; Tanner DA; Nakahara S
    ACS Appl Mater Interfaces; 2014 Nov; 6(21):18626-34. PubMed ID: 25300064
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optical and electrical properties of gallium-doped Mg(x)Zn(1-x)O.
    Wei W; Jin C; Narayan J; Narayan RJ
    J Appl Phys; 2010 Jan; 107(1):13510. PubMed ID: 20126386
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural evolution of nanocrystalline silicon thin films synthesized in high-density, low-temperature reactive plasmas.
    Cheng Q; Xu S; Ostrikov KK
    Nanotechnology; 2009 May; 20(21):215606. PubMed ID: 19423937
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photoluminescence Study of Gallium Nitride Thin Films Obtained by Infrared Close Space Vapor Transport.
    Santana G; de Melo O; Aguilar-Hernández J; Mendoza-Pérez R; Monroy BM; Escamilla-Esquivel A; López-López M; de Moure F; Hernández LA; Contreras-Puente G
    Materials (Basel); 2013 Mar; 6(3):1050-1060. PubMed ID: 28809356
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.