These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 28680395)

  • 1. A Biologically Plausible Architecture of the Striatum to Solve Context-Dependent Reinforcement Learning Tasks.
    Shivkumar S; Muralidharan V; Chakravarthy VS
    Front Neural Circuits; 2017; 11():45. PubMed ID: 28680395
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiple representations of belief states and action values in corticobasal ganglia loops.
    Samejima K; Doya K
    Ann N Y Acad Sci; 2007 May; 1104():213-28. PubMed ID: 17435124
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Striosomes and Matrisomes: Scaffolds for Dynamic Coupling of Volition and Action.
    Graybiel AM; Matsushima A
    Annu Rev Neurosci; 2023 Jul; 46():359-380. PubMed ID: 37068787
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Striatal contributions to reward and decision making: making sense of regional variations in a reiterated processing matrix.
    Wickens JR; Budd CS; Hyland BI; Arbuthnott GW
    Ann N Y Acad Sci; 2007 May; 1104():192-212. PubMed ID: 17416920
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Shifting responsibly: the importance of striatal modularity to reinforcement learning in uncertain environments.
    Amemori K; Gibb LG; Graybiel AM
    Front Hum Neurosci; 2011; 5():47. PubMed ID: 21660099
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A cholinergic feedback circuit to regulate striatal population uncertainty and optimize reinforcement learning.
    Franklin NT; Frank MJ
    Elife; 2015 Dec; 4():. PubMed ID: 26705698
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Short-term and long-term plasticity at corticostriatal synapses: implications for learning and memory.
    Di Filippo M; Picconi B; Tantucci M; Ghiglieri V; Bagetta V; Sgobio C; Tozzi A; Parnetti L; Calabresi P
    Behav Brain Res; 2009 Apr; 199(1):108-18. PubMed ID: 18948145
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predominant Striatal Input to the Lateral Habenula in Macaques Comes from Striosomes.
    Hong S; Amemori S; Chung E; Gibson DJ; Amemori KI; Graybiel AM
    Curr Biol; 2019 Jan; 29(1):51-61.e5. PubMed ID: 30554903
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Corticostriatal circuit mechanisms of value-based action selection: Implementation of reinforcement learning algorithms and beyond.
    Morita K; Jitsev J; Morrison A
    Behav Brain Res; 2016 Sep; 311():110-121. PubMed ID: 27173430
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of CAMKII in reinforcement learning: a computational model of glutamate and dopamine signaling pathways.
    Wanjerkhede SM; Bapi RS
    Biol Cybern; 2011 Jun; 104(6):397-424. PubMed ID: 21701878
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reward-related responses in the human striatum.
    Delgado MR
    Ann N Y Acad Sci; 2007 May; 1104():70-88. PubMed ID: 17344522
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly restricted origin of prefrontal cortical inputs to striosomes in the macaque monkey.
    Eblen F; Graybiel AM
    J Neurosci; 1995 Sep; 15(9):5999-6013. PubMed ID: 7666184
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanisms of hierarchical reinforcement learning in corticostriatal circuits 1: computational analysis.
    Frank MJ; Badre D
    Cereb Cortex; 2012 Mar; 22(3):509-26. PubMed ID: 21693490
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The "proactive" model of learning: Integrative framework for model-free and model-based reinforcement learning utilizing the associative learning-based proactive brain concept.
    Zsuga J; Biro K; Papp C; Tajti G; Gesztelyi R
    Behav Neurosci; 2016 Feb; 130(1):6-18. PubMed ID: 26795580
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiplicity of control in the basal ganglia: computational roles of striatal subregions.
    Bornstein AM; Daw ND
    Curr Opin Neurobiol; 2011 Jun; 21(3):374-80. PubMed ID: 21429734
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computing reward-prediction error: an integrated account of cortical timing and basal-ganglia pathways for appetitive and aversive learning.
    Morita K; Kawaguchi Y
    Eur J Neurosci; 2015 Aug; 42(4):2003-21. PubMed ID: 26095906
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heterarchical reinforcement-learning model for integration of multiple cortico-striatal loops: fMRI examination in stimulus-action-reward association learning.
    Haruno M; Kawato M
    Neural Netw; 2006 Oct; 19(8):1242-54. PubMed ID: 16987637
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Reinforcement learning by striatum].
    Kunisato Y; Okada G; Okamoto Y
    Brain Nerve; 2009 Apr; 61(4):405-11. PubMed ID: 19378810
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The basal ganglia and chunking of action repertoires.
    Graybiel AM
    Neurobiol Learn Mem; 1998; 70(1-2):119-36. PubMed ID: 9753592
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational perspectives on forebrain microcircuits implicated in reinforcement learning, action selection, and cognitive control.
    Bullock D; Tan CO; John YJ
    Neural Netw; 2009; 22(5-6):757-65. PubMed ID: 19592218
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.